

Jawaharlal Nehru Technological University Anantapur (Established by Govt. of A.P., Act. No. 30 of 2008)

(Established by Govt. of A.P., Act. No. 30 of 2008) Ananthapuramu–515 002 (A.P) India

Academic Regulations (R20) for B. Tech (Regular-Full time)

(Effective for the students admitted into I year from the Academic Year **2020-2021** onwards)

and

Academic Regulations (R20) for B.Tech(Lateral Entry Scheme)

(Effective for the students getting admitted into II year through Lateral Entry Scheme from the Academic Year **2021-2022** onwards)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERISTY ANANTAPUR

AMENDMENT

in

B.TECH. R20 ACADEMIC REGULATIONS

(As per AICTE guidelines)

Applicable for the Regular Students admitted from the academic year 2021-22 onwards and for the Lateral Entry Students admitted from 2022-23 onwards

1. The course on Universal Human Values which was offered as a non-credit mandatory course will now be carrying 03 credits

This is compulsory subject for all UG Degree Course in Engineering & Technology, with 03 exclusive credits. Hence the overall credits of curriculum are 163 credits instead of 160 credits for regular and 124 credits instead of 121 for lateral entry students.

It is offered in 3rd semester for all the disciplines of Engineering & Technology

 Environmental Science which is a non-credit mandatory course will now be offered in 5th semester for all disciplines of Engineering & Technology

1. Award of the Degree

a) Award of the B.Tech. Degree

A student will be declared eligible for the award of the B.Tech. degree if he/she fulfils the following:

- i) Pursues a course of study for not less than four academic years and not more than eight academic years. However, for the students availing Gap year facility this period shall be extended by two years at the most and these two years would in addition to the maximum period permitted for graduation (Eight years).
- ii) Registers for 160 credits and secures all 160 credits.

b) Award of B.Tech. degree with Honours/Minor

A student will be declared eligible for the award of the B.Tech. with Honours/Minor ifhe/she fulfils the following:

- i) Student secures additional 20 credits fulfilling all the requisites of a B.Tech. program i.e., 160 credits
- ii) A student is permitted to register either for Honours or a Minor but not for both. Registering for Honours/Minor is optional.
- iii) Honours/Minor is to be completed simultaneously with B.Tech. programme.
- 2. Students, who fail to fulfil all the academic requirements for the award of the degree within eight academic years from the year of their admission, shall forfeit their seat in B.Tech. course and their admission stands cancelled. This clause shall be read along with clause 1 a) i).

3. Courses of study:

The following courses are offered at present as specializations for the B. Tech. program for non-autonomous, constituent& affiliated colleges from 2020-21

S. No.	Name of the Program	Program Code
1.	Civil Engineering	01
2.	Electrical and Electronics Engineering	02
3.	Mechanical Engineering	03
4.	Electronics and Communication Engineering	04
5.	Computer Science and Engineering	05
6.	Information Technology	12
7.	Food Technology	27
8.	Artificial Intelligence & Data Science	30
9.	Computer Science and Engineering (Artificial Intelligence)	31
10.	Computer Science and Engineering (Data Science)	32
	Computer Science and Engineering (Artificial Intelligence	
11.	& Machine Learning)	33
12.	Computer Science and Engineering (IoT)	35

and any other course as approved by the authorities of the University from time to time.

4. Admissions:

Admission to the B. Tech Program shall be made subject to the eligibility, qualifications and specialization prescribed by the A.P. State Government/University from time to time. Admissions shall be made either based on the merit rank obtained by the student in the common entrance examination conducted by the A.P. Government/University or any other order of merit approved by the A.P. Government/University, subject to reservations as prescribed by the Government/University from time to time.

5. Program related terms:

a) Credit: A unit by which the course work is measured. It determines the number of hours of instructions required per week. One credit is equivalent to one hour of teaching (Lecture/Tutorial) or two hours of practical work/field work per week.

Credit definition:

1 Hr. Lecture (L) per week	1 credit
1 Hr. Tutorial (T) per week	1 credit
1 Hr. Practical (P) per week	0.5 credit
2 Hrs. Practical (Lab) per week	1 credit

- b) Academic Year: Two consecutive (one odd + one even) semesters constitute one academic year.
- *c) Choice Based Credit System (CBCS):* The CBCS provides choice for students to select from the prescribed courses.

6. Structure of the Undergraduate Programme

All courses offered for the undergraduate program (B. Tech.) are broadly classified as follows:

S.No.	Category	Code	Breakup of Credits
			(Total 160)
1.	Humanities and Social Science	HS	10.5
	including Management courses		
2.	Basic Science courses	BS	21
3.	Engineering Science Courses	ES	24
4.	Professional Core Courses	PC	51
5.	Professional Elective Courses	PE	15
6.	Open Elective Courses	OE	12
7.	Skill Oriented Courses	SC	10
8.	Internship, Project work	PR	16.5
9.	Non-credit Mandatory Courses	MC	Non credit

7. Course Classification:

All subjects/ courses offered for the undergraduate programme in E&T (B.Tech. degree programmes) are broadly classified as follows. The University has followed the guidelines issued by AICTE/UGC.

S.No.	Broad Course	Course Category	Description
	Classification		
			Includes mathematics, physics and chemistry
1.	Foundation	Foundation courses	Courses; fundamental engineering courses; humanities,
	Core Courses		socialsciences and management courses
2.		Professional Core	Includes subjects related to the parent
	Core Courses	Courses (PC)	discipline/department/branch of Engineering
		Professional Elective	Includes elective subjects related to the parent
		Courses (PE)	discipline/department/ branch of Engineering
3.	Elective	Open Elective	Elective subjects which include interdisciplinary
	Courses	Courses (OE)	subjects or subjects in an area outside the parent
			discipline/ department/ branch of Engineering
	Project &	Project	B.Tech. Project or Major Project
4.	Internships	Internships	Summer Internships – Community based and Industry
		-	Internships
			Industry oriented Full Semester Internship
			Covering subjects of developing desired attitude among
5.	Audit Courses	Mandatory noncredit	the learners
		courses	

8. Programme Pattern

- i. Total duration of the of B. Tech (Regular) Programme is four academic years
- ii. Each academic year of study is divided into two semesters.
- iii. Minimum number of instruction days in each semester is 90.
- iv. There shall be mandatory student induction program for freshers, with a threeweek duration before the commencement of first semester. Physical activity, Creative Arts, Universal Human Values, Literary, Proficiency Modules, Lectures by Eminent People, Visits to local Areas, Familiarization to Dept./Branch & Innovations etc., are included as per the guidelines issued by AICTE.
- v. All undergraduate students shall register for NCC/NSS/ activities. A student will be required to participate in an activity for two hours in a week either inthird or fourth semester. Grade shall be awarded as Satisfactory or Unsatisfactory in the mark sheet based on participation, attendance, performance, and behaviour. If a student gets an unsatisfactory grade, he/she shall repeat the above activity in the subsequent years, to complete the degree requirements
- vi. Courses like Environmental Sciences, Universal Human Values, Indian Constitution, Design Thinking for Innovation and Employability Skills is offered as non-credit mandatory courses for all branches.
- vii. Increased flexibility for students through an increase in the elective component of the curriculum, with 05 Professional Elective courses and 04 Open Elective courses.
- viii. Professional Elective Courses, include the elective courses relevant to the chosen specialization/branch. Proper choice of professional elective courses can lead to students specializing in an emerging area within the chosen field of study.

- ix. Student can opt for any open elective other than open elective offered by his/her own department. While choosing the electives, students shall ensure that they do not opt for the courses with syllabus contents similar to that of their departmental core/elective courses.
- x. A pool of interdisciplinary/job-oriented/domain skill courses which are relevant to the industry are integrated into the curriculum of all disciplines. There shall be 05 skill-oriented courses offered during III to VII semesters. Among the five skill courses, four courses shall focus on the basic and advanced skills related to the domain/interdisciplinary courses and the other shall be a soft skills course.
- xi. Students shall undergo mandatory summer internships, for a minimum of six weeks duration at the end of second and third year of the programme. There shall also be mandatory full internship in the final semester of the programme along with the project work.
- xii. Undergraduate degree either with Honours or a Minor is introduced by the University for the students having good academic record
- xiii. Each college shall take measures to implement Virtual Labs (<u>https://www.vlab.co.in</u>) which provide remote access to labs in various disciplines of Engineering and will help student in learning basic and advanced concept through remote experimentation. Student shall be made to work on virtual lab experiments during the regular labs.
- xiv. Each college shall assign a faculty advisor/mentor after admission to a group of students from same department to provide guidance in courses registration/careergrowth/placements/opportunities for higher studies/GATE/other competitive exams etc.
- xv. Preferably 25% course work for the theory courses in every semester shall be conducted in the blended mode of learning.

9. Evaluation Process

The performance of a student in each semester shall be evaluated subject wise with a maximum of 100 marks for theory and 100 marks for practical subject. Summer Internships shall be evaluated for 50 marks, Full Internship &Project workin final semester shall be evaluated for 200 marks, mandatory courses with no credits shall be evaluated for 30 mid semester marks.

- i) For theory subject, the distribution shall be 30 marks for Internal Evaluation and 70 marks for the End-Examination.
- ii) For practical subject, the distribution shall be 30 marks for Internal Evaluation and 70 marks for the End- Examination.
- iii) If any course contains two different branch subjects, the syllabus shall be written in two parts with 3 units each (Part-A and Part-B)
- iv) If any subject is having both theory and practical components, they will be evaluated separately as theory subject and practical subject. However, they will be given same subject code with an extension of 'T' for theory subject and 'P' for practical subject.

a) Continuous Internal Evaluation

- For theory subjects, during the semester, there shall be two midterm examinations. Each midterm examination shall be evaluated for 30 marks of which 10 marks for objective paper with 20 objective type questions (20 minutes duration), 15 marks for subjective paper (90 minutes duration) and 5 marks for assignment.
- ii) Objective paper shall be set for maximum of 20 bits for 10 marks. Subjective paper shall contain 3 either or type questions (totally six questions from 1 to 6) of which student has to answer one from each either-or type question. Each question carries 5 marks.

Note:

- The objective paper with 20 objective type questions shall be prepared in line with the quality of competitive examinations questions.
- The subjective paper shall contain 3 either or type questions of equal weightage of 5 marks. Any fraction shall be rounded off to the next higher mark.
- The objective paper shall be conducted either online or offline by the respective institution on the day of subjective paper test.
- If conducted offline, the midterm examination shall be conducted first by distribution of the Objective paper, simultaneously marking the attendance, after 20 minutes the answered objective paper shall be collected back. The student is not allowed to leave the examination hall.

Then the descriptive question paper and the answer booklet shall be distributed. After 90minutes the answered booklets are collected back.

- The assignment shall contain numerical problems/software development. If subject is purely descriptive and does not have any numerical problems, then essay type question/term paper shall be given. It should be continuous assessment throughout the semester. There shall be five assignments one for each unit and the average marks shall be considered.
- iii) If the student is absent for the mid semester examination, no re-exam shall be conducted and mid semester marks for that examination shall be considered as zero.
- iv) First midterm examination shall be conducted for I, II units of syllabus with one either or type question from each unit and third either or type question from both the units. The second midterm examination shall be conducted for III, IV and V units with one either or type question from each unit.

v) Final mid semester marks shall be arrived at by considering the marks secured by the student in both the mid examinations with 80% weightage given to the better mid exam and 20% to the other.For Example:

Marks obtained in first mid: 25

Marks obtained in second mid: 20

Final mid semester Marks: (25x0.8) + (20x0.2) = 24

If the student is absent for any one midterm examination, the final mid semester marks shall be arrived at by considering 80% weightage to the marks secured by the student in the appeared examination and zero to the other. For Example:

Marks obtained in first mid: Absent

- Marks obtained in second mid: 25
- Final mid semester Marks: (25x0.8) + (0x0.2) = 20

b) End Examination Evaluation:

End examination of theory subjects shall have the following pattern:

- i) There shall be 6 questions and all questions are compulsory.
- ii) Question I shall contain 10 compulsory short answer questions for a total of 20marks such that each question carries 2 marks.
- iii) There shall be 2 short answer questions from each unit.
- a) In each of the questions from 2 to 6, there shall be either/or type questions of 10 marks each. Student shall answer any one of them.
- iv) The questions from 2 to 6 shall be set by covering one unit of the syllabus for each question.

End examination of theory subjects consisting of two parts of different subjects, for Example: Basic Electrical &Electronics Engineering shall have the following pattern:

- i) Question paper shall be in two parts viz., Part A and Part B with equal weightage of 35 marks each.
- ii) In each part, question 1 shall contain 5 compulsory short answer questions for a total of 5 marks such that each question carries 1 mark.
- iii) In each part, questions from 2 to 4, there shall be either/or type questions of 10 marks each. Student shall answer any one of them.
- iv) The questions from 2 to 4 shall be set by covering one unit of the syllabus for each question
- b) For practical courses, there shall be a continuous evaluation during the semester for 30 sessional marks and end examination shall be for 70 marks. Day-to-day work in the laboratory shall be evaluated for 15 marks by the concerned laboratory teacher based on the regularity/record/viva and 15 marks for the internal test. The end examination shall be conducted by the concerned laboratory teacher and a senior expert in the subject from the same department.

In a practical subject consisting of two parts (Eg: Basic Electrical &Electronics Engineering Lab), the end examination shall be conducted for 35 marks in each part. Mid semester examination shall be evaluated as above for 30 marks in each part and final mid semester marks shall be arrived by considering the average of marks obtained in two parts.

c) For the subject having design and/or drawing, such as Engineering Drawing, the distribution of marks shall be 30 for mid semester evaluation and 70 for end examination.

Day-to-day work shall be evaluated for 15 marks by the concerned subject teacher based on the reports/submissions prepared in the class. And there shall be two midterm examinations in a semester for duration of 2 hours each for 15 marks with weightage of 80% to better mid marks and 20% for the other. The subjective paper shall contain 3 either or type questions of equal weightage of 5 marks. There shall be no objective paper in mid semester examination. The sum of day-to-day evaluation and the mid semester marks will be the final sessional marks for the subject.

The end examination pattern for Engineering Graphics, shall consists of 5 questions, either/or type, of 14 marks each. There shall be no objective type questions in the end examination. However, the end examination pattern for other subjects related to design/drawing is mentioned along with the syllabus.

- d) There shall be no external examination for mandatory courses with zero credits. However, attendance shall be considered while calculating aggregate attendance and student shall be declared to have passed the mandatory course only when he/she secures 40% or more in the internal examinations. In case, the student fails, a re-examination shall be conducted for failed candidates for 30 marks satisfying the conditions mentioned in item 1 & 2 of the regulations.
- e) The laboratory records and mid semester test papers shall be preserved for a minimum of 3 years in the respective institutions as per the University norms and shall be produced to the Committees of the University as and when the same are asked for.

10. Skill oriented Courses

- i) There shall be five skill-oriented courses offered during III to VII semesters.
- ii) Out of the five skill courses two shall be skill-oriented courses from the same domain. Of the remaining three skill courses, one shall be a soft skill course and the remaining two shall be skill-advanced courses from the same domain/Interdisciplinary/Job oriented.
- f) The course shall carry 100 marks and shall be evaluated through continuous assessments during the semester for 30 sessional marks and end examination shall be for 70 marks. Day-to-day work in the class / laboratory shall be evaluated for 30 marks by the concerned teacher based on the regularity/assignments/viva/mid semester test. The end examination similar to practical examination pattern shall be conducted by the concerned teacher and an expert in the subject nominated by the principal.
- iii) The Head of the Department shall identify a faculty member as coordinator for the course. A committee consisting of the Head of the Department, coordinator and a senior Faculty member nominated by the Head of the Department shall monitor the evaluation process. The marks/grades shall be assigned to the students by the above committee based on their performance.
- iv) The student shall be given an option to choose either the skill courses being offered by the college or to choose a certificate course being offered by industries/Professional bodies or any other accredited bodies. If a student chooses to take a Certificate Course offered by external agencies, the credits shall be awarded to the student upon producing the Course Completion Certificate from the agency. A committee shall be formed at the level of the college to evaluate the grades/marks given for a course by external agencies and convert to the equivalent marks/grades.
- v) The recommended courses offered by external agencies, conversions and appropriate grades/marks are to be approved by the University at the beginning of the semester. The principal of the respective college shall forward such proposals

to the University for approval.

vi) If a student prefers to take a certificate course offered by external agency, the department shall mark attendance of the student for the remaining courses in that semester excluding the skill course in all the calculations of mandatory attendance requirements upon producing a valid certificate as approved by the University.

11. MOOCs through SWAYAM Platform:

There shall be five professional elective courses and four open elective courses, which are Choice Based Credit Courses (CBCC), offered from V semester onwards. Among them, one elective course shall be pursued through MOOCs. The student shall register for the course (Minimum of 12 weeks) offered by SWAYAM with the approval of Head of the Department. The Head of the Department shall appoint one mentor to monitor the student's assignment submissions given by SWAYAM. The student needs to earn a certificate by passing the exam. The student shall be awarded the credits assigned in the curriculum only by submission of the certificate. Examination fee, if any, will be borne by the student.

A Student must complete the SWAYAM MOOC course in all respects on or before 5 / 6 / 7 semester. Students' MOOC course score in terms of marks/grade/credits will be counted in their 5/6/7 semester marks sheet as the case may be. Students who have qualified in the proctored examinations conducted by the SWAYAM and apply for credit transfer as specified are exempted from appearing internal as well as external examination (for the specified equivalent credit course only) conducted by the university.

Necessary amendments in rules and regulations regarding adoption of SWAYAM MOOCS courses would be proposed from time to time.

Credit Equivalence for SWAYAM MOOCs Courses:

Courses of 04 weeks duration: 01 Credit Courses of 08 weeks duration: 02 Credits

Courses of 12 weeks duration: 03 Credits

Courses of 16 weeks duration: 04 Credits

12. Credit Transfer Policy

Adoption of MOOCs is mandatory for all students, to enable Blended model of teaching-learning as also envisaged in the NEP 2020. As per University Grants Commission (Credit Framework for Online Learning Courses through SWAYAM) Regulation, 2016, the University shall allow up to a maximum of 40% of the total courses being offered in a particular Programme in a semester through the Online Learning courses through SWAYAM platform (www.swayam.gov.in).

- i) The University shall offer credit mobility for MOOCs and give the equivalent credit weightage to the students for the credits earned through online learning courses through SWAYAM platform.
- ii) The online learning courses available on the SWAYAM platform will be considered for credit transfer. SWAYAM course credits are as specified in the platform.

- iii) Student registration for the MOOCs shall be only through the institution, it is mandatory for the student to share necessary information with the institution
- iv) Credit transfer policy will be applicable to the Professional & Open Elective courses offered by the university under Choice Based Credit System (CBCS).
- v) The institution shall select the courses to be permitted for credit transfer through SWAYAM. However, while selecting courses in the online platform institution would essentially avoid the courses offered through the curriculumas it may otherwise lead to duplication and repetition of the same course
- vi) The University/institution shall notify at the beginning of semester the list of the online learning courses eligible for credit transfer in the forthcoming Semester.
- vii) The institution shall also ensure that the student has to complete the course and produce the course completion certificate as per the academic schedule given for the regular courses in that semester
- viii)The institution shall designate a faculty member as a Mentor for each course to guide the students from registration till completion of the credit course.
- ix) The university shall ensure no overlap of SWAYAM MOOC exams with that of the university examination schedule. In case of delay in SWAYAM results, the university will re-issue the marks sheet for such students.
- x) Student pursuing courses under MOOCs shall acquire the required credits only after successful completion of the course and submitting a certificate issued by the competent authority along with the percentage of marks and grades.
- xi) The institution shall submit the following to the examination section of the university:
 - a) List of students who have passed MOOC courses in the current semester along with the certificates of completion.
 - b) Undertaking form filled by the students for credit transfer.
- xii) The university shall resolve any issues that may arise in the implementation of this policy from time to time and shall review its credit transfer policy in the light of periodic changes brought by UGC, SWAYAM, NPTEL and state government.

Note: Students shall also be permitted to register for MOOCs offered through online platforms other than SWAYAM / NPTEL. In such cases, credit transfer shall be permitted only after seeking approval of the University at least three months prior to the commencement of the semester.

13. Mandatory Internships

Summer Internships:

Two summer internships either onsite or virtual each with a minimum of six weeks duration, done at the end of second and third years, respectively are mandatory. It shall be completed in collaboration with local industries, Govt. Organizations, construction agencies, Hydel and thermal power projects, software MNCs or any industries in the areas of concerned specialization of the Undergraduate program. One of the two summer internships shall be society oriented and shall be completed in collaboration with government organizations/NGOs& others. The student shall register for the internship as per course structure after commencement of academic year.

Evaluation of the summer internships shall be through the departmental committee. A student will be required to submit a summer internship report to the concerned department and appear for an oral presentation before the departmental committee comprising of Head of the Department, supervisor of the internship and a senior faculty member of the department. A certificate from industry shall be included in the report. The report and the oral presentation shall carry 40% and 60% weightages, respectively. It shall be evaluated for 50 external marks. There shall be no internal marks for Summer Internship. A student shall secure minimum 40% of marks for successful completion. In case, if a student fails, he/she shall reappear as and when semester supplementary examinations are conducted by the University.

Full Semester Internship and Project work:

In the final semester, the student should mandatorily register and undergo internship (onsite/virtual) and in parallel he/she should work on a project with well-defined objectives. At the end of the semester the candidate shall submit an internship completion certificate and a project report. A student shall also be permitted to submit project report on the work carried out during the internship.

The project report shall be evaluated with an external examiner. The total marks for project work 200 marks and distribution shall be 60 marks for internal and 140 marks for external evaluation. The supervisor assesses the student for 30 marks (Report: 15 marks, Seminar: 15 marks). At the end of the semester, all projects shall be showcased at the department for the benefit of all students and staff and the same is to be evaluated by the departmental Project Review Committee consisting of supervisor, a senior faculty and HOD for 30 marks. The external evaluation of Project Work is a Viva-Voce Examination conducted in the presence of internal examiner and external examiner appointed by the University and is evaluated for 140 marks

The College shall facilitate and monitor the student internship programs. Completion of internships is mandatory, if any student fails to complete internship, he/she will not be eligible for the award of degree. In such cases, the student shall repeat and complete the internship.

14. Guidelines for offering a Minor

The main objective of Minor in a discipline is to provide additional learning opportunities for academically motivated students and it is an optional feature of the B. Tech. programme. Students who are desirous of pursuing their special interest areas other than the chosen discipline of Engineering may opt for additional courses in minor specialization groups offered by a department other than their parent department and as defined by the respective department offering Minor program.

i) Minoris introduced in the curriculum of all B. Tech. programs offering a major degree and is applicable to all B. Tech (Regular and Lateral Entry) students

admitted in Engineering & Technology.

- ii) Minor programs shall be offered in emerging technologies by the respective departments or in collaboration with the relevant industries/agencies.
- iii) A student shall earn additional 20 credits in the specified area to be eligible for the award of B.Tech. degree with Minor. This is in addition to the credits essential for obtaining the Undergraduate Degree in Major Discipline (i.e., 160 credits).
- iv) A student is permitted to register for a Minor offered by a department other than the parent department and as defined by the respective department offering Minor program.
- v) A student is permitted to select a Minor program only if the institution is already offering a Major degree program in that discipline
- vi) A student is permitted to register for Minor in IV semester after the results of III Semester are declared and students may be allowed to take maximum two subjects per semester pertaining to their Minor from V Semester onwards.
- vii) The courses offered under Minor can have theory as well as laboratory component. If a course comes with a lab component, that component is to be cleared separately
- viii)The Concerned Principal of the college shall arrange separate class work and timetable of the courses offered under various Minor programs.
- ix) Courses that are used to fulfil the student's primary major may not be double counted towards the Minor. Courses with content substantially equivalent to courses in the student's primary major may not be counted towards the Minor.
- x) Students can complete the courses offered under Minor either in the college or in online platforms like SWAYAMwith a minimum duration of 12 weeksfor a 3-credit course and 8 weeks duration for a 2-credit course satisfying the criteria defined for credit mobility. If the courses under Minor are offered in conventional mode, then the teaching and evaluation procedure shall be similar toregular B. Tech courses
- xi) The attendance for the registered courses under Minor and regular courses offered for Major degree in a semester are to be considered separately.
- xii) A student shall maintain an attendance of 75% in all registered courses of Minor to be eligible for attending semester end examinations.
- xiii) A student detained due to lack of attendance and having backlogsin regular B. Tech program shall not be permitted to continue Minor
- xiv) A student registered for Minor in a discipline shall pass in all subjects that constitute the requirement for the Minor degree programme.No class/division (i.e., second class, first class and distinction, etc.) shall be awarded for Minor degree programme.
- xv) If a student drops or is terminated from the Minor program, the additional credits so far earned cannot be converted into open or core electives; they will remain extra. However, such students will receive a separate grade sheet mentioning the additional courses completed by them.

xvi)The Minor in a discipline will be mentioned in the degree certificate as Bachelor of Technology in XXX with Minor in YYY. For example, Bachelor of Technology in Mechanical Engineering with Minor in Machine Learning.

Enrolment into a Minor:

- i) The enrolment of student into a Minor is based on the percentage of marks obtained in the major degree program.
- Percentage of marks shall be taken up to III semester in case of regular entry students and only III semester in case of lateral entry students. Students having 60% of marks without any backlog subjects will be permitted to register for a Minor.
- iii) If a student is detained due to lack of attendance in either Major or Minor program, registration shall be cancelled
- iv) Minimum strength required for offering a Minor offline in a discipline is considered as 20% of the sanctioned intake. If a minimum enrolments criterion is not met, then the students may be permitted to register for the equivalent MOOC courses as approved by the concerned Head of the department satisfying the criteria for credit mobility.
- v) Transfer of credits from a particular Minor to regular B. Tech. and vice-versa shall not be permitted
- vi) Minor is to be completed simultaneously with Major degree program.

Registration for Minor:

- i) The institution will announce specialization, eligibility and courses offered by the departments under Minor and seek registrations in IV Semester, after the results of III Semester are announced.
- ii) The eligible and interested students shall apply through the HOD of his/her parent department. The whole process should be completed within one week before the start of every semester. Selected students shall be permitted to register the courses under Minor.
- iii) The selected students shall submit their willingness to the principal through his/herparent department which shall be forwarded to the concerned departments offering Minor. Both parent department and department offering minor shall maintain the record of student pursuing the Minor.
- iv) The students enrolled in the minor courses will be monitored continuously. An advisor/mentor from parent department shall be assigned to a group of students to monitor the progress.
- v) There is no fee for registration of subjects under Minor program offered in offline at the respective institutions.

15. Guidelines for offering Honours

The objective of introducing B.Tech. (Hons.) is to facilitate the students to choose additionally the specialized courses of their choice and build their competence in a specialized area in the UG level. The programme is a best choice for academically excellent students having good academic record and interest towards higher studies and research.

- i) Honours is introduced in the curriculum of all B. Tech. programs offering a major degree and is applicable to all B. Tech (Regular and Lateral Entry) students admitted in Engineering & Technology.
- ii) A student shall earn additional 20 credits for award of B.Tech.(Honors) degree from same branch/department/discipline registered for major degree. This is in addition to the credits essential for obtaining the Undergraduate degree in Major Discipline (i.e., 160 credits).
- iii) A student is permitted to register for Honours in IV semester after the results of III Semester are declared and students may be allowed to take maximum two subjects per semester pertaining to the Honours from V Semester onwards.
- iv) The Concerned Principal of the college shall arrange separate class work and timetable of the courses offered under Honours program.
- v) Courses that are used to fulfil the student's primary major may not be double counted towards the Honours. Courses with content substantially equivalent to courses in the student's primary Major may not be counted towards the Honours.
- vi) Students can complete the courses offered under Honours either in the college or in online platforms like SWAYAM with a minimum duration of 12 weeks for a 3-credit course and 8 weeks duration for a 2-credit course satisfying the criteria for credit mobility. If the courses under Honours are offered in conventional mode, then the teaching and evaluation procedure shall be similar to regular B. Tech courses
- vii) The attendance for the registered courses under Honours and regular courses offered for Major degree in a semester are to be considered separately.
- viii) A student shall maintain an attendance of 75% in all registered courses under Honours to be eligible for attending semester end examinations.
- ix) A student registered for Honours shall pass in all subjects that constitute the requirement for the Honours degree program. No class/division (i.e., second class, first class and distinction, etc.) shall be awarded for Honours degree programme.
- x) If a student drops or is terminated from the Honours program, the additional credits so far earned cannot be converted into open or core electives; they will remain extra. However, such students will receive a separate grade sheet mentioning the additional courses completed by them.
- xi) The Honours will be mentioned in the degree certificate as Bachelor of Technology (Honours) in XXX. For example, B.Tech. (Honours) in Mechanical Engineering

Enrolment into Honours:

- i) Students of a Department/Discipline are eligible to opt for Honours program offered by the same Department/Discipline
- ii) The enrolment of student into Honours is based on the percentage of marks

obtained in the major degree program. Percentage of marks shall be taken up to III semester in case of regular entry students and only III semester in case of lateral entry students. Students having 70% without any backlog subjects will be permitted to register for Honours.

- iii) If a student is detained due to lack of attendance either in Major or in Honours, registration shall be cancelled
- iv) Minimum strength required for offering Honours offline is considered as 20% of the sanctioned intake. If a minimum enrolments criterion is not met, then the students may be permitted to register for the equivalent MOOC courses as approved by the concerned Head of the department satisfying criteria for credit mobility.
- v) Transfer of credits from Honours to regular B. Tech degree and vice-versa shall not be permitted
- vi) Honours is to be completed simultaneously with a Major degree program.

Registration for Honours:

- i) The institution will announce courses offered by the departments under Honours before the start of the semester.
- ii) The eligible and interested students shall apply through the HOD of his/her parent department. The whole process should be completed within one week before the start of every semester. Selected students shall be permitted to register the courses under Honours.
- iii) The selected students shall submit their willingness to the Principal through his/her parent department offering Honours. The parent department shall maintain the record of student pursuing the Honours.
- iv) The students enrolled in the Honours courses will be monitored continuously. An advisor/mentor from parent department shall be assigned to a group of students to monitor the progress.
- v) There is no fee for registration of subjects for Honours program offered in offline at the respective institutions.

16. Attendance Requirements:

- A student shall be eligible to appear for the University external examinations if he/she acquires a minimum of 40% attendance in each subject and 75% of attendance in aggregate of all the subjects. b) Condonation of shortage of attendance in aggregate up to 10% (65% and above and below 75%) in each semester may be granted by the College Academic Committee.
- ii) Shortage of Attendance below 65% in aggregate shall in NO CASE be condoned.
- iii) A stipulated fee shall be payable towards condonation of shortage of attendance to the University.
- iv) Students whose shortage of attendance is not condoned in any semester are not eligible to take their end examination of that class and their registration shall stand cancelled.

- v) A student will not be promoted to the next semester unless he satisfies the attendance requirements of the present semester. They may seek readmission for that semester from the date of commencement of class work.
- vi) If any candidate fulfils the attendance requirement in the present semester, he shall not be eligible for readmission into the same class.
- vii) If the learning is carried out in blended mode (both offline & online), then the total attendance of the student shall be calculated considering the offline and online attendance of the student.

viii)For induction programme attendance shall be maintained as per AICTE norms.

17. Promotion Rules:

The following academic requirements must be satisfied in addition to the attendance requirements mentioned in section 14.

- i) A student shall be promoted from first year to second year if he/she fulfils the minimum attendance requirement as per university norms.
- ii) A student will be promoted from II to III year if he/she fulfils the academic requirement of securing 40% of the credits (any *decimal* fraction should be *rounded off* to *lower* digit)up to in the subjects that have been studied up to III semester from the following examinations, irrespective of whether the candidate takes the end examination or not as per the normal course of study.

One regular and two supplementary examinations of I Semester One regular and one supplementary examination of II Semester One regular examination of III semester

iii) A student shall be promoted from III year to IV year if he/shefulfils the academic requirements of securing 40% of the credits(any *decimal* fraction should be *rounded off* to *lower* digit)in the subjects that have been studied up to V semester from the following examinations, irrespective of whether the candidate takes the end examination or not as per the normal course of study.

One regular and four supplementary examinations of I Semester.

One regular and three supplementary examinations of II Semester.

One regular and two supplementary examinations of III Semester.

One regular and one supplementary examination of IV Semester.

One regular examination of V Semester.

And in case a student is detained for want of credits for a particular academic year by ii) & iii) above, the student may make up the credits through supplementary examinations and only after securing the required credits he/she shall be permitted to join in the V semester or VII semester respectively as the case may be.

iv) When a student is detained due to lack of credits/shortage of attendance he/she may be re-admitted when the semester is offered after fulfilment of academic regulations. In such case, he/she shall be in the academic regulations into which he/she is readmitted.

18. Grading:

As a measure of the student's performance, a 10-point Absolute Grading System using the following Letter Grades and corresponding percentage of marks shall be followed:

After each course is evaluated for 100 marks, the marks obtained in each course will be converted to a corresponding letter grade as given below, depending on the range in which the marks obtained by the student fall.

Range in which the marks	Grade	Grade points					
in the subject fall		Assigned					
≥ 90	S (Superior)	10					
$\geq 80 < 90$	A (Excellent)	9					
$\geq 70 < 80$	B (Very Good)	8					
$\ge 60 < 70$	C (Good)	7					
\geq 50 < 60	D (Average)	6					
\geq 40 < 50	E (Pass Average)	5					
<40	F (Fail)	0					
Absent	Ab (Absent)	0					

Structure of Grading of Academic Performance

i) A student obtaining Grade 'F' or Grade 'Ab' in a subject shall be considered failed and will be required to reappear for that subject when it is offered the next supplementary examination.

ii) For noncredit audit courses, "Satisfactory" or "Unsatisfactory" shall be indicated instead of the letter grade and this will not be counted for the computation of SGPA/CGPA/Percentage.

Computation of Semester Grade Point Average (SGPA) and Cumulative Grade Point Average (CGPA):

The Semester Grade Point Average (SGPA) is the ratio of sum of the product of the number of credits with the grade points scored by a student in all the courses taken by a student and the sum of the number of credits of all the courses undergone by a student, i.e.,

$SGPA = \Sigma (C_i \times G_i) / \Sigma C_i$

where, C_i is the number of credits of the ith subject and G_i is the grade point scored by the student in the ith course.

i) The Cumulative Grade Point Average (CGPA) will be computed in the same manner considering all the courses undergone by a student over all the semesters of a program, i.e.,

 $CGPA = \Sigma (C_i \times S_i) / \Sigma C_i$

where " S_i " is the SGPA of the i^{th} semester and C_i is the total number of credits up to that semester.

ii) Both SGPA and CGPA shall be rounded off to 2 decimal points and reported in the transcripts.

iii) While computing the SGPA the subjects in which the student is awarded Zero grade points will also be included.

Grade Point: It is a numerical weight allotted to each letter grade on a 10-point scale. Letter Grade: It is an index of the performance of students in a said course. Grades are denoted by letters S, A, B, C, D and F.

19. Award of Class:

After a student has satisfied the requirements prescribed for the completion of the program and is eligible for the award of B. Tech. Degree, he/she shall be placed in one of the following four classes:

Class Awarded	Percentage of Marks to be secured
First Class withDistinction	≥70%
First Class	< 70% ≥ 60%
Second Class	<60% ≥ 50%
Pass Class	$<50\% \ge 40\%$

20. With–holding of Results

If the candidate has any dues not paid to the university or if any case of indiscipline or malpractice is pending against him/her, the result of the candidate shall be withheld, and the candidate will not be allowed/promoted into the next higher semester. The issue of awarding degree is liable to be withheld in such cases.

21. Exit Policy

A student shall be permitted to exit with an undergraduate Diploma (in the field of learning discipline applicable only for regular students) based on his/her request to the University through the respective institution subject to passing all the courses offered in first & second year.

A student shall be permitted to exit with a B.S. degree (in the field of learning discipline) based on his/her request to the university through the respective institution subject to passing all the courses offered in first, second and third years.

The University shall resolve any issues that may arise in the implementation of this policy from time to time and shall review the policy in the light of periodic changes brought by UGC, AICTE and State government.

22. Transitory Regulations

Discontinued, detained, or failed candidates are eligible for readmission as and when the semester is offered after fulfilment of academic regulations. Candidates who have been detained for want of attendance or not fulfilled academic requirements or who have failed after having undergone the course in earlier regulations or have discontinued and wish to continue the course are eligible for admission into the unfinished semester from the date of commencement of class work with the same or equivalent subjects as and when subjects are offered, subject to Section 2 and they will follow the academic regulations into which they are readmitted.

Candidates who are permitted to avail Gap Year shall be eligible for re-joining into the succeeding year of their B. Tech from the date of commencement of class work, subject to Section 2 and they will follow the academic regulations into which they are readmitted.

23. Minimum Instruction Days for a Semester:

The minimum instruction days including exams for each semester shall be 90 days.

24. Medium of Instruction:

The medium of instruction of the entire B. Tech undergraduate programme in Engineering &Technology (including examinations and project reports) will be in English only.

25. Student Transfers:

Student transfers shall be as per the guidelines issued by the Government of Andhra Pradesh and the University from time to time.

26. General Instructions:

- a. The academic regulations should be read as a whole for purpose of any interpretation.
- b. Malpractices <u>rules-nature</u> and punishments are appended.
- c. Where the words "he", "him", "his", occur in the regulations, they also include "she", "her", "hers", respectively.
- d. In the case of any doubt or ambiguity in the interpretation of the above rules, the decision of the Vice-Chancellor is final.
- e. The University may change or amend the academic regulations or syllabi at any time and the changes or amendments shall be made applicable to all the students on rolls with effect from the dates notified by the University.

ACADEMIC REGULATIONS (R20) FOR B.TECH. (LATERAL ENTRY SCHEME)

(Effective for the students getting admitted into II year through Lateral Entry Scheme from the Academic Year 2021-2022 onwards)

1. Award of B.Tech. Degree

A student admitted in Lateral Entry Scheme (LES) will be declared eligible for the award of the B.Tech degree if the student fulfils the following academic regulations:

- a) Pursues a course of study for not less than three academic years and not more than six academic years.
- b) Registers for <u>121</u> credits and secures all <u>121</u> credits from II to IV year of Regular B. Tech. program.
- 2. Students, who fail to fulfil the requirement for the award of the degree within <u>six</u> consecutive academic years from the year of admission, shall forfeit their seat.

3. Minimum Academic Requirements:

The following academic requirements have to be satisfied in addition to the requirements mentioned in item no.4

- i. A student shall be deemed to have satisfied the minimum academic requirements and earned the credits allotted to each theory, practical, design, drawing subject or project if he secures not less than 35% of marks in the end examination and a minimum of 40% of marks in the sum total of the mid semester evaluation and end examination taken together.
- ii. A student shall be promoted from third year to fourth year only if the student fulfils the academic requirements of securing 40% of credits (any *decimal* fraction should be *rounded off* to *lower* digit) from the following examinations, irrespective of whether the candidate takes the end examination or not as per the normal course of study.
 - a. One regular and two supplementary examinations of III semester.
 - b. One regular and one supplementary examination of IV semester.
 - c. One regular examination of V semester.

And in case if student is already detained for want of credits for particular academic year, the student may make up the credits through supplementary exams of the above exams before the commencement of IV year I semester class work of next year.

4. Course Pattern

- 4.1. The entire course of study is three academic years on semester pattern.
 - 4.2. A student eligible to appear for the end examination in a subject but absent at it or has failed in the end examination may appear for that subject at the next supplementary examination offered.

- 4.3. When a student is detained due to lack of credits/shortage of attendance the student may be re-admitted when the semester is offered after fulfilment of academic regulations, the student shall be in the academic regulations into which he/she is readmitted.
- 5. All other regulations asapplicable for B. Tech. Four-year degree course (Regular) will hold good for B. Tech. (Lateral Entry Scheme).
- 6. There shall be a bridge course in Mathematics with zero credits in III semester for all disciplines. The course work is conducted for 20 Hrs in the semester and there shall be no examination conducted for the course.
- 5. Lateral Entry Students shall compulsorily pursue mandatory non-credit courses Environmental Science and Universal Human Values either in III semester or IV semester.

RULES FOR

DISCIPLINARY ACTION FOR MALPRACTICES / IMPROPER CONDUCT IN EXAMINATIONS

	Nature of Malpractices/Improper conduct	Punishment
	<i>If the candidate:</i>	
1.(a)	Possesses or keeps accessible in examination hall, any paper, note book, programmable calculators, Cell phones, pager, palm computers or any other form of material concerned with or related to the subject of the examination (theory or practical) in which he is appearing but has not made use of (material shall include any marks on the body of the candidate which can be used as an aid in the subject of the examination)	Expulsion from the examination hall and cancellation of the performance in that subject only.
(b)	Gives assistance or guidance or receives it from any other candidate orally or by any other body language methods or communicates through cell phones with any candidate or persons in or outside the exam hall in respect of any matter.	Expulsion from the examination hall and cancellation of the performance in that subject only of all the candidates involved. In case of an outsider, he will be handed over to the police and a case is registered against him.
2.	Has copied in the examination hall from any paper, book, programmable calculators, palm computers or any other form of material relevant to the subject of the examination (theory or practical) in which the candidate is appearing.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted to appear for the remaining examinations of the subjects of that semester/year. The Hall Ticket of the candidate is to be cancelled and sent to the University.
3.	Impersonates any other candidate in connection with the examination.	The candidate who has impersonated shall be expelled from examination hall. The candidate is also debarred for four consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat. The performance of the original candidate who has been impersonated, shall be cancelled in all the subjects of the examination (including practicals and project work) already appeared and shall not be allowed to appear for examinations of the remaining subjects of that semester/year. The candidate is also debarred for four consecutive semesters from class work and all University examinations, if his involvement is established. Otherwise, the candidate is debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat. If the imposter is an outsider, he will be handed over to the police and a case is registered against him.

4.	Smuggles in the Answer book or additional sheet or takes out or arranges to send out the question paper during the examination or answer book or additional sheet, during or after the examination.	Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat.
5.	Uses objectionable, abusive or offensive language in the answer paper or in letters to the examiners or writes to the examiner requesting him to award pass marks.	Cancellation of the performance in that subject only.
6.	Refuses to obey the orders of the Chief Superintendent /Assistant - Superintendent /any officer on duty or misbehaves or creates disturbance of any kind in and around the examination hall or organizes a walk out or instigates others to walk out, or threatens the officer-in charge or any person on duty in or outside the examination hall of any injury to his person or to any of his relations whether by words, either spoken or written or by signs or by visible representation, assaults the officer-in-charge, or any person on duty in or outside the examination hall or any of his relations, or indulges in any other act of misconduct or mischief which result in damage to or destruction of property in the examination hall or any part of the College campus or engages in any other act which in the opinion of the officer on duty amounts to use of unfair means or misconduct or has the tendency to disrupt the orderly conduct of the examination.	In case of students of the college, they shall be expelled from examination halls and cancellation of their performance in that subject and all other subjects the candidate(s) has (have) already appeared and shall not be permitted to appear for the remaining examinations of the subjects of that semester/year. If the candidate physically assaults the invigilator/ officer-in-charge of the Examinations, then the candidate is also debarred and forfeits his/her seat. In case of outsiders, they will be handed over to the police and a police case is registered against them.
7.	Leaves the exam hall taking away answer script or intentionally tears of the script or any part thereof inside or outside the examination hall.	Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat.
8.	Possess any lethal weapon or firearm in the examination hall.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat.
9.	If student of the college, who is not a candidate for the particular examination or any person not connected with the college indulges in any malpractice or improper conduct mentioned in clause 6 to 8.	Student of the colleges expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining

		examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat. Person (s) who do not belong to the College will be handed over to police and, a police case will be registered against them.
10.	Comes in a drunken condition to the examination hall.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year.
11.	Copying detected on the basis of internal evidence, such as, during valuation or during special scrutiny.	Cancellation of the performance in that subject only or in that subject and all other subjects the candidate has appeared including practical examinations and project work of that semester / year examinations, depending on the recommendation of the committee.
12.	If any malpractice is detected which is not covered in the above clauses 1 to 11 shall be reported to the University for further action to award suitable punishment.	

Malpractices identified by squad or special invigilators

- 1. Punishments to the candidates as per the above guidelines.
- 2. Punishment for institutions : (if the squad reports that the college is also involved in encouraging malpractices)
- 3. A show cause notice shall be issued to the college.
- 4. Impose a suitable fine on the college.
- 5. Shifting the examination centre from the college to another college for a specific period of not less than one year.

Note:-

Whenever the performance of a student is cancelled in any subject/subjects due to Malpractice, he has to register for End Examinations in that subject/subjects consequently and has to fulfil all the norms required for the award of Degree.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

AMENDMENT

in

B.TECH. R20 ACADEMIC REGULATIONS

(Applicable for students admitted into non autonomous Constituent & Affiliated colleges) (As per AICTE guidelines)

Applicable for the Regular Students admitted from the academic year 2021-22 onwards and for the Lateral Entry Students admitted from 2022-23 onwards

1. The course on Universal Human Values which was offered as a non-credit mandatory course will now be carrying 03 credits

This is compulsory subject for all UG Degree Courses in Engineering & Technology, with 03 exclusive credits. Hence the overall credits of curriculum are 163 credits instead of 160 credits for regular and 124 credits instead of 121 for lateral entry students.

It is offered in 3rd semester for all the disciplines of Engineering & Technology

 Environmental Science, which is a non-credit mandatory course will now be offered in 5th semester for all disciplines of Engineering & Technology

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERISTY ANANTAPUR MINORS

CONSTRUCTION TECHNOLOGY

S.No.	Course Code	Course Title	Contact Hours per week		Credits	
			L	Т	Р	-
1.	20A01M11	Building Materials	3	1	0	4
2.	20A01M12	Building Construction	3	1	0	4
3.	20A01M13	Building planning and Drawing	3	1	0	4
4.	20A01M14	Surveying	3	1	0	4
5.	20A01M15	MOOC I: Concrete Technology				2
6.	20A01M16	MOOC II: Green Buildings				2

ENVIRONMENTAL GEOTECHNOLOGY

S.No	Course Code	Course Title	Contact Hours per week		Credits	
			L	Т	Р	
1.	20A01M21	Environmental Legislation &	3	1	0	4
		Management systems.				
2.	20A01M22	Engineering Geology	3	1	0	4
3.	20A01M23	RS & GIS Applications in Environmental	3	1	0	4
		Engineering				
4.	20A01M24	Disaster Management	3	1	0	4
5.	20A01M25	MOOC I: Rock Engineering				2
6.	20A01M26	MOOC II: Air quality modeling &				2
		Management				

ENERGY SYSTEMS

S.No.	Code	Course Name	Contact Hours per week		Credits	
			L	Т	Р	
1	20A02M01	Energy Audit and Management	3	1	0	4
2	20A02M02	Energy Management in Building	3	1	0	4
3	20A02M03	Energy Conversion Systems	3	1	0	4
4	20A02M04	Energy Scenario and Energy Policy	3	1	0	4
5	20A02M05	MOOC I: Energy Resources &				2
		Technology				
6	20A02M06	MOOC II: Waste to Energy Conversion				2

3D PRINTING

S.No.	Code	Course Name	Contact Hours per week			Credits
			L	Т	Р	
1	20A03M11	Material Science for engineering	3	1	0	4
2	20A03M12	Computer Aided Machine Drawing	3	1	0	4
3	20A03M13	3D Printing Materials	3	1	0	4
4	20A03M14	Applications of 3D Printing	3	1	0	4
5	20A03M15	MOOC I: Metal Additive				2
		Manufacturing				
		https://onlinecourses.nptel.ac.in/noc				
		22_me130/preview				
6	20A03M16	MOOC II: Introduction to				2
		Composites				
		https://nptel.ac.in/courses/11210416				
		8				

INDUSTRIAL ENGINEERING

S.No.	Code	Course Name	Contact Hours		C P	
			per	week		Credits
			L	Т	P	
1	20A03M21	Production Planning and Control	3	1	0	4
2	20A03M22	Marketing Management	3	1	0	4
3	20A03M23	Customer Relationship Management	3	1	0	4
4	20A03M24	Six Sigma & Lean Manufacturing	3	1	0	4
5	20A03M25	MOOC I: Work System Design				2
		https://onlinecourses.nptel.ac.in/noc22_me				
		133/preview				
6	20A03M26	MOOC II: Strategic Management for				2
		Competitive Advantage				
		https://onlinecourses.nptel.ac.in/noc22_m				
		g88/preview				

INTERNET OF THINGS

S.No	Code	Course Title	Contact Hours per week		Credits	
			L	Т	Р	
1.	20A04M01	Introduction to Internet of Things	3	0	2	4
2.	20A04M02	IoT with Arduino, ESP, and Raspberry Pi	3	0	2	4
4.	20A04M03	Communication Protocols for IoT	3	1	0	4
6	20A04M04	Industrial IoT	3	1	0	4
8.	20A04M05	MOOC I: Introduction to Data Analytics				2
9.	20A04M06	MOOC II: Introduction to Machine Learning				2

S.No.	Code	Course Name	Contact Hours per week			Credits
			L	Т	Р	
1	20A05M01	Introduction to Data Science	3	0	2	4
2	20A05M02	Fundamentals of Deep Learning	3	0	2	4
3	20A05M03	Principles of Software Development & Operations	3	1	0	4
4	20A05M04	Applications of AI & DS	3	1	0	4
5	20A05M05	MOOC I: Tools for Data Science Python for Data Science, AI & Development Python Project for Data Science				2
6	20A05M06	MOOC II: Data Science for Engineers Applied Accelerated Artificial Intelligence				2

ARTIFICIAL INTELLIGENCE & DATA SCIENCE

VIRTUAL & AUGMENTED REALITY

S.No.	Code	Course Name	Contact Hours per week		Credits	
			L	Т	Р	
1	20A30M01	Virtual Reality	3	1	0	4
2	20A30M02	Free & Open-source software for VR-AR	3	0	2	4
3	20A30M03	Advanced Game development	3	0	2	4
4	20A30M04	VR-AR for Health Care	3	1	0	4
5	20A30M05	MOOC I: Introduction to XR: VR, AR, and MR Foundations Mobile VR App Development with Unity Handheld AR App Development with Unity				2
6	20A30M06	MOOC II: 3D Interaction Design in Virtual Reality Building Interactive 3D characters and Social VR Making your First Virtual Reality Game				2

S.No.	Code	Course Name	Contact Hours per			
			week			Credits
			L	Т	Р	
1	20A12M01	Applied Cryptography	4	0	0	4
2	20A12M02	Introduction to Crypto Currency	4	0	0	4
3	20A12M03	Foundations of Block Chain	4	0	0	4
		Technology				
4	20A12M04	Block Chain Use Cases	4	0	0	4
5	20A12M05	MOOC I: Foundations of				2
		Cryptography				
		Computer Networks & Internet				
		Protocol				
6	20A12M06	MOOC II:				2
		Information Security				
		Ethical Hacking				
		Privacy & Security in online social				
		media				

CYBER SECURITY AND BLOCK CHAIN TECHNOLOGIES

FOOD SCIENCE

S.No.	Code	Course Title	Contac	t Hours per week	Credits
			L	Т	
1	20A27M01	Principles of Food Engineering	3	1	4
2	20A27M02	Food Plant Utilities & Services	3	1	4
3	20A27M03	Business Management and Economics	3	1	4
4	20A27M04	Plant Design and Economics	3	1	4
5		MOOC.I: Fundamentals of Food Process			2
	20A27M05	Engineering			
6	20A27M06	MOOC.II: Thermal Processing of Foods			2

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CE) L T P C

(20A01M11) BUILDING MATERIALS

Course Objectives:

- The course intends to provide basic information on the structure and properties of construction materials to students.
- Acquire basic knowledge on building materials such as stones, bricks, cement, aggregates, concrete
- Study the types of timber, their preservation techniques and usage in construction.
- Course provides basic knowledge of the properties of essential materials like steel and plastics
- Understanding of typical and potential applications of common building materials

Course Outcomes:

- Explain the characteristics of stones and bricks.
- Describe the properties of cement, aggregate, concrete, mortar.
- Identify the suitability of timber, paints and varnishes for building works.
- Link the material choice with the application in construction.
- Understand the types and applications of reinforcing steel and plastics in construction

UNIT I

Stones: Classifications of stones, uses of stones as building materials, characteristics of good building stones - General characteristics of stones – Marble, Kota stone, Granite, Sand, Trap, Basalt stone, Lime stone and Slate

UNIT II

Bricks: Composition of brick clay. Raw materials for brick manufacturing and properties of good brick making earth - Process of manufacturing bricks. Characteristics of good building bricks, classification of bricks. Testing of common building bricks as per BIS: 3495 - Introduction to light weight bricks.

UNIT III

Timber: Timber as a building material and its uses. Various types of timber -Identification and uses of different types of timber: Teak, Deodar, Shisham, Sal, Mango, Kail, Chir, Fir, Hollock, Champ - Seasoning and its importance - Defects in timber, decay in timber - Preservation of wood. Other wood based products- manufacture and uses: laminated board, gypsum board, block board, fibre board, hard board, sunmica, plywood, veneers

UNIT IV

Cement: Chemical composition of cement, manufacturing process. Specifications for Ordinary Portland Cement, Types of cements. Fine Aggregate: Characteristics of good sand and its classifications, bulking of sand. Quarry sand. Coarse Aggregate: Characteristics of good coarse aggregates for manufacture of concrete.

UNIT V

Reinforcing steel: Types of reinforcement, specifications - M.S., HYSD, TMT. Paints : Constituents, characteristics of good paints, varnishes- Plastics – Introduction and uses of various plastic products in buildings such as doors, water tanks and PVC pipes

Textbooks:

- 1. Building Materials: Products, Properties and Systems, Gambhir M.L., Neha Jamwal, McGraw Hill Education (India) Private Limited, 2014.
- 2. Building Materials, by Varghese P.C., PHI Learning Pvt. Ltd., Delhi, 2015.
- 3. Advances in Building Materials and Construction, Central Building Research Institute, Roorkee, 2004.

Reference Books:

- 1. Building Materials, by Duggal S.K., New Age Publishers, 2012
- 2. Engineering Materials, by RangwalaCharotar Publishers, 2015

Online Learning Resources: https://onlinecourses.nptel.ac.in/noc21_ce10/preview

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CE) L T P C

3 1 0 4

(20A01M12) BUILDING CONSTRUCTION

Course Objectives:

- Propose suitable type of foundation for building structures.
- Construction technique to be followed in brick and stone masonry
- Understanding the concepts involved in flooring and roofing of building structures.
- To make students familiar with Pre fabricated building technology
- To introduce students about the various components and methods of utilizing solar energy in buildings

Course Outcomes:

- Identify components of building structures
- Explain the salient characteristics for the given building structure
- Select suitable type of masonry for building structures
- Identify various types of flooring and roofing materials.
- Understand the methodology of constructing advances structures

UNIT IBuildings and foundations

Component parts of a building -Their functions - Classification of buildings according to National building code - Site investigation for foundation as per N.B.C – Classification of buildings according to National building code. - Spread footing foundation for columns and walls - Raft foundation - Pile foundation - RCC Piles - Bearing piles, friction piles and under reamed pile - Causes, effects and prevention of dampness at basement level.

UNIT IIMasonry

Classification of stone masonry - Ashlar, Random rubble and Coursed Rubble Masonry - general principles to be observed while constructing stone masonry - Brick Masonry - Bonds in brick masonry - (English bond only) for various wall thicknesses - General principles to be observed in construction of brick masonry - principles of locating doors, windows and ventilators in buildings - functions of lintels, sunshades, canopy, sun-breakers and porticos.

UNIT IIIRoofs and Floorings

Roof - functions of roofs - Classification of roofs - flat roofs - pitched roofs - Different types of trusses - classification based on material and shape king post truss, queen post truss, fan roof truss, north light roof truss, steel trusses of angular and tubular sections as per IS code - Weather proof course on R.C.C. roof - Decorative ceilings for auditoriums - method of fixing Plaster of Paris -Fibre glass - Parts of flooring - Requirements of a good floor - Methods of constructing flooring - cement concrete flooring, stone slab (Kadapa slab, Shahabad stone) floorings, cement plaster flooring, Tiled flooring, mosaic flooring.

UNIT IVPre fabricated building technology

Alternatives for cast in-situ structures - Understand pre fabrication technology - Importance for standardisation and modularisation – pre fabricated structures their utility & advantages - Materials used in pre fabricated elements – suitability for various climatic conditions - Types of pre fabricated systems – large panel systems - frame systems – slab / column systems with walls – mixed systems.

UNIT VSolar Energy Utilization in Building

Conversion of Solar energy into Electricity - Photovoltaic Effect, Solar photovoltaic cell and its working principle - Active - Passive concepts of solar Heating and cooling - Different types of Solar cells, Series and parallel connections, Photovoltaic applications: Solar energy utilities – water heaters, air heaters, cookers, lighting and water pump sets. - Roof top Solar power generation systems

Textbooks:

- 1. Building Construction by <u>Pc Varghese</u>, <u>Prentice Hall Of India</u>
- 2. Prefab Architecture, a guide to modular design & construction Ryan E Smith, John Wiley Publishers

Reference Books:

- 1. A To Z Practical Building Construction & Its Management by <u>Sandeep Mantri</u>, <u>Satya</u> <u>Prakashan</u>.
- 2. Building Construction By S.C.Rangawala, Charitor Publications.
- 3. Solar Energy Utilization, G. D. Rai, Khanna Publishers
- 4. N.B.C, National Building code
- 5. Explanatory handbook on Masonry code, SP20

Online Learning Resources:

https://nptel.ac.in/courses/124105013

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CE) L T P C 3 1 0 4

(20A01M13) BUILDING PLANNING AND DRAWING

Course Objectives:

- Understand basic principles of building design and planning.
- Comprehend local building bye-laws and provisions of National Building Code in respect of building and town planning
- They will explore building drawing as a way of discovering and developing ideas for designing residential, commercial and public buildings.
- The student develops basic drawing skills; create multilayer architectural and prepare working drawings, foundation plans and other executable drawings with proper details for residential buildings
- Explain the principles of planning and design considerations to construct earthquake resistant building

Course Outcomes:

- The scope of this course is to introduce the concepts of building planning and drawing with emphasis on architectural planning.
- This subject is designed as an introduction for subjects who wish to develop their competence and skills in the preparation of architectural and building drawings.
- Able to know the requirements of different rooms and characteristics of various types of residential buildings.
- Able to know about building byelaws and regulations.
- Ability to draw line sketch and planning and bi section of a building.

UNIT I

PART - A

PLANING OF BUILDINGS: Types of buildings, Types of residential buildings, site selection for residential building, orientation of buildings; aspect; prospect; privacy; furniture requirement e;grouping;circulation;sanitation;lighting;ventilation;cleanliness;flexibility;elegancy;Economy; practical considerations.

BUILDING BYELAWS AND REGULATIONS: Introduction- Terminology ;Objectives of building byelaws; Minimum plot sizes; Open space requirements ;Plinth area, floor area, carpet area; Floor area ratio (FAR), Floor space Index (FSI) ;areas for different units; Principles underlying building byelaws ; built up area limitations – Height of Buildings ,Wall thickness, lighting and ventilation requirement, safety from fire, drainage and sanitation; applicability of the bye-laws.

UNIT II

PLANNING OF RESIDENTIAL BUILDINGS: Minimum standards for various parts of buildings– Requirements of different rooms and their grouping – Characteristics of various types of residential buildings

PLANNING OF PUBLIC BUILDING: Planning of Educational institutions, Hospitals, Office buildings, Banks, Industrial buildings, Hotels and Motels, Hostels, Bus Station.

UNIT III

BUILDINGS: SAFETY AND COMFORT: Aspects of safety-Structural, health, fire and constructional safety. Components of building automation system - HVAC, electrical lighting, Security, fire-fighting, communication etc. design for thermal comfort, ventilation comfort, air conditioning comfort, lighting comfort, noise and acoustic comfort.

UNIT IV PART - B

SIGN CONVENTIONS AND BONDS: Brick, Stone, Plaster, Sand filling, Concrete, Glass, Steel, Cast iron, Copper alloys, Aluminum alloys etc., Lead, Zinc, tin, and white lead etc., Earth, Rock, Timber and Marble. English bond & Flemish bond; odd & even courses for one, one and half, two and two and half brick walls in thickness at the junction of a corner.

DOORS WINDOWS, VENTILATORS AND ROOFS: Paneled Door – Paneled and glazed door; glazed windows – Paneled windows; Swing ventilator – Fixed ventilator; Couple roof – Collar roof; Kind Post truss – Queen post truss.

UNIT V

Given line diagram with specification to draw plan, section and elevation of the following :

- 1. Residential Building
- 2. Hospital
- 3. Schools
- 4. Post office
- 5. Corporate Office Building
- 6. Hotels
- 7. Bank buildings
- 8. Bus stations
- 9. Industrial buildings

FINAL EXAMINATION PATTERN: The end examination paper should consist of Part- A and Part-B. Part- A consists of three questions with either or choice from three units in planning portion .Each question carries 10 marks. Total marks for Part-A is 30 marks. Part- B consists of two questions with either or choice from drawing portion. Question from unit-IV carries 10 marks and question from unit-V carries 30 marks. Total marks for Part-B is 40 marks.

Textbooks:

- 1. Planning and Designing and Scheduling Gurucharan Singh and Jagadish Singh- Standard publishers.
- 2. Building Planning and Design N.Kumara Swamy and A.Kameswara Rao. Charotar publications.

Reference Books:

- 1. Building by laws by state and Central Governments and Municipal corporations. National Building Code.
- 2. Building drawing with an integrated approach to building environment-M.G.Saha, G.M.Kale, S.Y.patki-Tata Mc Graw Hill

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CE) L T P C 3 1 0 4

(20A01M14) SURVEYING

Course Objectives:

- To make the student to get well conversant with the fundamentals of various basic methods and instruments of surveying.
- To introduce to the students in identifying reduced level of the ground and its profile for finding areas and volumes of embankments and cuttings
- To make the student to use angular measuring instruments for horizontal and vertical control.
- To enable the student to set simple horizontal curves
- To introduce the knowledge construction surveys and usage of modern instrument such as total station

Course Outcomes:

- The student will be able to calculate angles, distances and levels
- The student will be able to identify data collection methods and prepare field notes
- The student will be able to understand the working principles of survey instruments
- The student will be able to understand the basics and elements of different types of curves on roads and surveying applications in setting out of curves
- The student will be able to able to use modern survey instruments.

UNIT I

Introduction and Basic Concepts: Introduction, Objectives, classification and principles of surveying, Scales, Shrinkage of Map, Conventional symbols and Code of Signals, Surveying accessories, phases of surveying. Measurement of Distances and Directions Linear distances-Approximate methods, Direct Methods- Chains- Tapes, ranging, Tape corrections, indirect methods-optical methods- E.D.M. method.Prismatic Compass- Bearings, included angles, Local Attraction, Magnetic Declination, and dip.

Plane table surveying: Introduction, accessories, setting up of plane table, techniques, testing, adjustments, errors, advantages and disadvantages.

UNIT II

Levelling - Basics definitions, types of levels and levelling staves, temporary adjustments, methods of levelling, booking and Determination of levels- HI Method-Rise and Fall method, Effect of Curvature of Earth and Refraction.

Contouring- Characteristics and uses of Contours, Direct & Indirect methods of contour surveying, interpolation and sketching of Contours.

Computation of Areas and Volumes: Areas - Determination of areas consisting of irregular boundary and regular boundary, Planimeter. Volumes - Computation of areas for level section and two level sections with and without transverse slopes, determination of volume of earth work in cutting and embankments, volume of borrow pits, capacity of reservoirs.

UNIT III

Theodolite Surveying: Types of Theodolites, Fundamental Lines, temporary adjustments, measurement of horizontal angle by repetition method and reiteration method, measurement of vertical Angle, Trigonometrical levelling when base is accessible and inaccessible.

Traversing: Methods of traversing, traverse computations and adjustments, Gale's traverse table, Omitted measurements.

UNIT IV

Tacheometric Surveying: Principles of Tacheometry, stadia and tangential methods of Tacheometry.

Curves: Types of curves and their necessity, elements of simple circular curve, setting out of simple horizontal circular curves.

UNIT V

Construction surveys: Introduction-staking out buildings-Pipelines and sewers-Highways-Culverts. Bridge surveys-Determining the length of a bridge-Locating Centres of piers- Surface surveys and tunnel alignment-Underground surveys-connection of surface and underground surveys-Leveling in tunnels.

Total station Surveying: Basic principles, applications, comparison with conventional surveying. Electromagnetic wave theory - Electromagnetic distance measuring system - Principle of working and EDM instruments.

Textbooks:

- 1. Text book of surveying by C.Venkatramaiah, Universities press,2nd edition2018
- 2. Surveying" (Vol 1 & 2), by S K Duggal, Tata McGraw Hill Publishing Co. Ltd. New Delhi, 2004.

Reference Books:

- 1. Surveying Vol 1, 2 & 3, by Arora K R Standard Book House, Delhi, 2004.
- 2. Surveying (Vol 1, 2 & 3) by B. C. Punmia, Ashok Kumar Jain and Arun Kumar Jain Laxmi Publications (P) ltd., New Delhi.
- 3. Higher Surveying by Chandra A M, New age International Pvt. Ltd., Publishers, New Delhi, 2002.

Online Learning Resources: https://nptel.ac.in/courses/105104101

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CE) L T P C 3 1 0 4

(20A01M21) ENVIRONMENTAL LEGISLATION & MANAGEMENT SYSTEMS

Course Objectives:

- Explain the various global conventions and their objectives in the field of environment.
- Describe the constitutional provision for environmental protection and conservation in India
- List and describe the various Indian environmental laws along with their objectives
- Describe the various pollution related acts such as water, air and environment act;
- Students are introduced to the wide range of tools used in environmental management and for environmental decision-making.

Course Outcomes:

- Implement environmental policies and address governmental regulations.
- Ensuring a holistic approach to environmental impacts
- Understand the standards of IS 14000 & 14001 and its framework to address environmental management issues.
- Exposition about the human right to environment and constitutional framework governing environment in India.
- Understanding the role of international/ national environmental institutions, NGOs, civil society and community involvement in promoting the cause of environment.

UNIT I

Global Environmental Policies: UNO and Environmental Protection – EPA Guidelines for environmental protection - International multilateral environmental agreements and Protocols – Montreal Protocol, Kyoto agreement, Rio declaration etc –Government of India environmental policies – Ministry of Environment, Forest and Climate Change -Institutional framework (SPCB/CPCB/NGT) –Setting up of environmental standards.

UNIT II

Water (P & CP) Act, 1974: Powers & functions of regulatory agencies - Responsibilities of Occupier, Provision relating to prevention and control – Legal sampling procedures, State Water Laboratory – Appellate Authority – Penalties for violation of consent conditions etc - Provisions for closure/directions in apprehended pollution situation.

UNIT III

Air (P & CP) Act, 1981: Powers & functions of regulatory agencies - Responsibilities of Occupier, Provision relating to prevention and control – Legal sampling procedures - State Air Laboratory – Appellate Authority – Penalties for violation of consent conditions etc - Provisions for closure/directions in apprehended pollution situation.

UNIT IV

Environment (Protection) Act 1986: Provisions of Act – delegation of powers – Role of Central Government - EIA Notification – Siting of Industries – Coastal Zone Regulations -Responsibilities of local bodies –Legislations on Solid Waste Management (MSW, Biomedical, Plastic, e-waste, Hazardous waste) - Indian Forest Act.

UNIT V

Legislative Management Systems: Public Liability Insurance Act, CrPC, IPC -Public Interest Litigation - ISO 14000 - ISO 14001- Environmental management systems -CPCB/ICMR/ICAR standards. - Scheme of Consent for establishment, Consent for operation - SEAC Environmental Clearance.

Textbooks:

- 1. Pollution Control acts, Rules and Notifications issued there under "Pollution Control Serie PCL/2/1992, Central Pollution Control Board, Delhi, 1997.
- 2. Environmental law and policy in India" Shyam Divan and Armin Roseneranz Oxford University Press, New Delhi, 2001.

Reference Books:

- 1. The ISO 14000 Handbook: Joseph Cascio.
- 2. ISO 14004: Environmental management systems: General guidelines on principles, systems and supporting techniques (ISO 14004:1996 (E)).
- 3. ISO 14001: Environmental management systems: Specification with guidance for use (ISO 14001:1996b (E)) (International organization for standardization-Switzerland)
- 4. Constitution of India [Referred articles from part-III, part-IV and part-IV A]
- 5. Environmental Laws in India (Deep, Latededn.) Pares Distn.
- 6. Handbook of environmental management and technology: Gwendolyn Holmes, Ben Ramnarine Singh, Louis Theodore.

Online Learning Resources:

https://nptel.ac.in/courses/129106002

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CE) L T P C 3 1 0 4

(20A01M22) ENGINEERING GEOLOGY

Course Objectives:

- Type of rocks, civil engineering importance of rock forming minerals.
- Geological structures, reasons of formation for each type and their side effects on the engineering projects
- Study ground water, factors affecting on the variation of water table depth methods of searching for ground water.
- Study the geophysical investigation methods
- Study the dams and geology of dam site.

Course Outcomes:

- To apply the geological knowledge to civil engineering. Constructions at different stages. The kind of study exposes the Geological drawbacks if any
- To help the site engineers to take suitable precautionary measures to overcome the drawbacks but also to take advantage of the site geology findings wherever possible. To take precautionary measures in civil engineering constructions based on geological parameters
- To develop a native construction plan incorporating all relevant aspects of geology.
- To know seismic and electrical methods to investigate the subsurface geology
- To characterize of engineering properties of rocks and soils

UNIT I

INTRODUCTION:

Importance of geology from Civil Engineering point of view. Brief study of case histories of failure of some Civil Engineering constructions due to geological draw backs. Importance of Physical geology, Petrology and Structural geology.

WEATHERING OF ROCKS:

Its effect over the properties of rocks importance of weathering with REFERENCE to dams, reservoirs and tunnels weathering of common rock like "Granite"

MINERALOGY:

Definition of mineral, Importance of study of minerals, Different methods of study of minerals. Advantages of study of minerals by physical properties. Role of study of physical properties of minerals in the identification of minerals. Study of physical properties of following common rock forming minerals: Feldspar, Quartz, Flint, Jasper, Olivine, Augite, Hornblende, Muscovite, Biotite, Asbestos, Chlorite, Kyanite, Garnet, Talc, Calcite. Study of other common economics minerals such as Pyrite, Hematite, Magnetite, Chrorite, Galena, Pyrolusite, Graphite, Magnesite, and Bauxite.

UNIT II

PETROLOGY:

Definition of rock: Geological classification of rocks into igneous, Sedimentary and metamorphic rocks. Dykes and sills, common structures and textures of Igneous. Sedimentary and Metamorphic rocks. Their distinguishing features, Megascopic study of Granite, Dolerite, Basalt, Pegmatite, Laterite, Conglomerate, Sand Stone, Shale, Limestone, Gneiss, Schist, Quartzite, Marble and Slate.

STRUCTURAL GEOLOGY:

Out crop, strike and dip study of common geological structures associating with the rocks such as folds, faults un conformities, and joints – their important types. Their importance Insitu and drift soils, common types of soils, their origin and occurrence in India

GROUND WATER, EARTH QUAKE & LAND SLIDES:-

Groundwater, Water table, common types of ground water, springs, cone of depression, geological controls of ground water movement, ground water exploration. Earth quakes, their causes and effects, shield areas and seismic belts. Seismic waves, Richter scale, precautions to be taken for building construction in seismic areas. Landslides, their causes and effect; measures to be taken to prevent their occurrence. Importance of study of ground water, earth quakes and land slides.

UNIT IV

GEOPHYSICAL STUDIES:

Importance of Geophysical studies Principles of geophysical study by Gravity methods. Magnetic methods, Electrical methods. Seismic methods, Radio metric methods and geothermal method. Special importance of Electrical resistivitymethods, and seismic refraction methods. Improvement of competence of sites by grouting etc.

UNIT V

GEOLOGY OF DAMS, RESERVOIRS AND TUNNELS:

Types of dams and importance of Geology of site in their selection, Geological Considerations in the selection of a dam site. Analysis of dam failures of the past. Factors Contributing to the success of a reservoir. Geological factors influencing water Lightness and life of reservoirs. Purposes of tunneling, Effects of Tunneling on the ground Role of Geological Considerations (ie. Tithological, structural and ground water) in tunneling over break and lining in tunnels.

Textbooks:

- 1. Engineering Geology by N.Chennkesavulu, Mc-Millan, India Ltd. 2005
- 2. Engineering Geology by Vasudev Kanthi, Universities press, Hyderabad.

Reference Books:

- 1. Engineering geology by Prabinsingh, KatsonPubilcations
- 2. Engineering geology by Duggal, TMH Publishers.
- 3. Engineering Geology by SubinoyGangopadhyay, Oxford University press.
- 4. Principals of Engineering Geology by K.V.G.K. Gokhale B.S publications
- 5. "Environmental Geology", by K. S. Valdiya, Tata Mc Grew Hill.

Online Learning Resources:

https://nptel.ac.in/courses/105105106

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CE) L T P C 3 1 0 4

(20A01M23) RS & GIS APPLICATION IN ENVIRONMENTAL ENGINEERING

Course Objectives:

- To study the basic Environmental aspects and satellites
- To study the RS & GIS application in soil degradation
- To study the RS & GIS application in water pollution
- To study the RS & GIS application in Air quality
- To understand the RS & GIS application in Environmental management

Course Outcomes:

- Understand the importance and applications of various environmental satellites for land, water, atmosphere and oceans monitoring
- Realize the role of RS & GIS in assessing the soil degradation and suggest necessary control measures.
- Understand the concepts of spectral characteristics for assessing quality of ground water and data base creation
- To apply the remote sensing techniques for monitoring atmosphere constituents and modelling using GIS
- The knowledge gained is applied to solve complex spatial problems related to environmental engineering.

UNIT I

BASICS

Water- Air-Land-Marine Environment Global Climatologic, urban Environment Environmental satellites GEOS, NOAA, AVHRR, CZCR Monitoring land, water, atmosphere and ocean using Remote Sensing Data. Water- Air-Land-Marine Environment Global Climatologic, urban Environment

UNIT II

SOIL DEGRADATION

Spectral characteristics of soil- Soil formation- classification of soils- soil survey interpretation and mapping- impact of agricultural and industrial activity on soil properties. RS & GIS in assessing Soil salinity- alkalinity- water logging studies- soil erosion- types and estimation -control measures.

UNIT III

WATER QUALITY AND GROUND WATER POLLUTION

Spectral characteristics of water- classification of water quality -Data base creation and quality modeling using GIS. Aquifer Vulnerability -Intrinsic and specific vulnerability-contaminant transport model.

UNIT IV

AIR QUALITY AND COASTAL STUDIES

Atmosphere: Chemicals, Particulate matters present in the atmosphere, allowable limits, Remote Sensing techniques - Monitoring atmosphere constituents- air pollution - industrial activity, modeling using GIS - Ecology studies- Coastal color monitoring- marine studies.

UNIT V

ENVIRONMENTAL MANAGEMENT

Revenue management-environment and ecological concerns- Resource development in remote areas-Impacts of anthropogenic activity- Solid Waste management- Forest

classification Mapping – Biomass estimation - Carbon footprints and sinks, carbon trading, carbon credits and marketing, Indian and international status.

Textbooks:

- 1. Fundamentals of Remote Sensing, Third Edition, George Joseph, C Jeganathan, Universities Press, 2018
- 2. Remote Sensing and Image Interpretation by Lilliesand .T.M and Kiefer .R.W, John Wily and sons, 1994.

Reference Books:

- 1. Principles of Geograj1JhicaJ Information Systems by Burrough .P.A and McDonnell .R.A, Oxford University Press, 1988.
- 2. Remote Sensing of Environment by Lintz .J and Simonet Addison Wesley Publishing Company, 1994.

Online Learning Resources:

https://nptel.ac.in/courses/105103193

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CE) L T P C 3 1 0 4

(20A01M24) DISASTER MANAGEMENT

Course Objectives:

- To give knowledge types of disasters and stages in disaster rehabilitation process.
- To make awareness on change in climates and their impacts on occurrence of environmental disasters.
- To impart knowledge on Consideration of wind and water effects as per codal provisions to withstand disasters.
- To familiarize the student with the Causes of earthquake and their effects and remedial methods to be adopted for buildings.
- To illustrate the methodology in Planning and design considerations of various structures constructing in disaster prone areas.

Course Outcomes:

- About various types of disasters and stages in disaster rehabilitation process.
- Impact of change in climates and their impacts on occurrence of environmental disasters.
- Adopting suitable codal provisions to study the effect of wind and water effects on various structures constructed at disaster prone areas.
- Causes of earthquake and their effects and remedial methods to be adopted for buildings.
- Adopt suitable Planning and design considerations of various structures constructing in disaster prone areas.

UNIT I

Brief introduction to different types of natural disaster, Occurrence of disaster in different climatic and geographical regions, hazard (earthquake and cyclone) map of the world and India, Regulations for disaster risk reduction, Post disaster recovery and rehabilitation (socioeconomic consequences)

UNIT II

Climate change and its impact on tropical cyclone, Nature of cyclonic wind, velocities and pressure, Cyclone effects, Storm surge, Floods, Landslides. Behavior of structures in past cyclones and wind storms, case studies. Cyclonic retrofitting, strengthening of structures and adaptive sustainable reconstruction. Life–line structures such as temporary cyclone shelter.

UNIT III

Basic wind engineering, aerodynamics of bluff bodies, vortex shedding and associated unsteadiness along and across wind forces. Lab: Wind tunnel testing, its salient features. Introduction to Computational fluid dynamics. General planning/design considerations under wind storms & cyclones; Wind effects on buildings, towers, glass panels etc, & wind resistant features in design. Codal Provisions, design wind speed, pressure coefficients; Coastal zoning regulation for construction & reconstruction phase in the coastal areas, innovative construction material & techniques, traditional construction techniques in coastal areas.

UNIT IV

Causes of earthquake, plate tectonics, faults, seismic waves; magnitude, intensity, epicenter, energy release and ground motions. Earthquake effects – On ground, soil rupture, liquefaction, landslides. Performance of ground and building in past earthquakes: Behavior of various types of buildings, structures, and collapse patterns; Behavior of Non-structural elements like services, fixtures, mountings- case studies. Seismic retrofitting- Weakness in existing buildings, aging, concepts in repair, restoration and seismic strengthening.

UNIT V

General Planning and design consideration; Building forms, horizontal and vertical eccentricities, mass and stiffness distribution, soft storey etc.; Seismic effects related to building configuration. Plan and vertical irregularities, redundancy and setbacks. Various Types and Construction details of: Foundations, soil stabilization, retaining walls, plinth fill, flooring, walls, openings, roofs, terraces, parapets, boundary walls, under-ground – overhead tanks, staircases and isolation of structures; innovative construction material and techniques; Local practices: traditional regional responses; Computational investigation techniques.

Textbooks:

- 1. Disaster Management by Rajib Shah, Universities Press, India, 2003
- 2. Disaster Management by R.B. Singh (Ed) Rawat Publication, New Delhi, 2000

Reference Books:

- 1. Natural disasters. By Abbott, L. P. (2013) 9th Ed. McGraw-Hill.
- 2. Earthquake Resistant Design of Structures. By Agarwal, P. and Shrikhande, M. (2009). New Delhi : PHI Learning.
- 3. Mapping Vulnerability: Disasters, Development and People. by Bankoff, G., Frerks, G. and Hilhorst, D. (2004). London : Earthscan.
- 4. Improving Earthquakes and Cyclone Resistance of Structures:Guidelines for the Indian Subcontinent. TERI
- 5. Disaster Mitigation, preparedness, recovery and Response. By Sinha, P. C. (2006). New Delhi : SBS Publishers.

6. World Bank. (2009). Handbook for Reconstructingafter Natural Disasters.

Online Learning Resources:

https://onlinecourses.swayam2.ac.in/cec19_hs20/preview

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR **B.Tech (EEE)** LTPC 3 1 0 4

(20A02M01) ENERGY AUDIT AND MANAGEMENT

Course Objectives:

- Able to understand the basic concepts of Energy Audit and Management, Principles and objectives of Energy management and Basics of Thermal, Electrical energy management
- Able to apply the fundamental concepts for development of energy management systems •
- Able to Design Energy Audit reports
- Able to analyze designed energy management systems •

Course Outcomes:

- Understand the basic concepts of Energy Audit, Management, Principles and objectives of Energy management and Basics of Thermal, Electrical energy management
- Apply the fundamental concepts for development of energy management systems •
- Design Energy Audit reports by considering various methods •
- Analyze designed Energy management systems by using various tests

UNIT I **INTRODUCTION**

Basic elements and measurements - Mass and energy balances - Scope of energy auditing industries - Evaluation of energy conserving opportunities.

UNIT II ENERGY AUDIT CONCEPTS Lecture Hrs:14 Need of Energy audit - Types of energy audit - Energy management (audit) approach understanding energy costs - Bench marking - Energy performance - Matching energy use to requirement - Maximizing system efficiencies - Optimizing the input energy requirements - Duties and responsibilities of energy auditors- Energy audit instruments - Procedures and Techniques.

UNIT III PRINCIPLES AND OBJECTIVES OF ENERGY Lecture Hrs:14 MANGEMENT

Design of Energy Management Programmes - Development of energy management systems -Importance - Indian need of Energy Management - Duties of Energy Manager - Preparation and presentation of energy audit reports - Some case study and potential energy savings.

UNIT IV THERMAL ENERGY MANAGEMENT Lecture Hrs:14 Energy conservation in boilers - steam turbines and industrial heating systems - Application of FBC -Cogeneration and waste heat recovery - Thermal insulation - Heat exchangers and heat pumps -Building Energy Management.

UNIT V ELECTRICAL ENERGY MANAGEMENT Lecture Hrs:12 Supply side Methods to minimize supply-demand gap- Renovation and modernization of power plants - Reactive power management - HVDC - FACTS - Demand side - Conservation in motors -Pumps and fan systems – Energy efficient motors.

Textbooks:

1. Hamies, Energy Auditing and Conservation; Methods Measurements, Management and Case study, Hemisphere, Washington, 1980.

2. Energy Management: W.R.Murphy, G.Mckay

Reference Books:

- 1. Energy Management Principles: C.B.Smith
- 2. Efficient Use of Energy : I.G.C.Dryden
- 3. Energy Economics A.V.Desai

4. Guide book for National Certification Examination for Energy Managers and Energy Auditors (Could be downloaded from www.energymanagertraining.com).

Online Learning Resources: . https://nptel.ac.in/courses/108106022

Lecture Hrs:10

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (EEE) L T P C

3 1 0 4

(20A02M02) ENERGY MANAGEMENT IN BUILDING

Course Objectives:

- Able to understand the significance of energy management in buildings, Ventilation and Air conditioning aspects, Climate influence, energy usage estimation and technological options for energy management
- Able to apply the Energy management concepts for building designs
- Able to analyze different conditions for preparation of efficient energy management system for a building
- Able to design efficient energy management systems for buildings

Course Outcomes:

- Understand the significance of energy management in buildings, Ventilation and Air conditioning aspects, Climate influence, energy usage estimation and technological options for energy management
- Apply the Energy management concepts for building designs
- Analyze different conditions for preparation of efficient energy management system for a building
- Design efficient energy management systems for buildings

UNIT I OVERVIEW OF THE SIGNIFICANCE OF ENERGY Lecture Hrs:12 USE AND ENERGY PROCESSES IN BUILDING

Indoor activities and environmental control - Internal and external factors on energy use and the attributes of the factors - Characteristics of energy use and its management - Macro aspect of energy use in dwellings and its implications – Concepts of energy efficient building.

UNIT II INDOOR ENVIRONMENTAL REQUIREMENT Lecture Hrs:14 AND MANAGEMENT

Thermal comfort – Ventilation and air quality - Air-conditioning requirement - Visual perception – Illumination requirement - Auditory requirement – Concept of sick building syndrome – Significance in energy management in buildings.

UNIT III CLIMATE

Solar radiation and their influences - The sun-earth relationship and the energy balance on the earth's surface - Climate - Wind - Solar radiation - Temperature - Sun shading and solar radiation on surfaces - Energy impact on the shape and orientation of buildings.

UNIT IV END-USE

Lecture Hrs:14

Lecture Hrs:12

Energy utilization and requirements – Lighting and day lighting – End-use energy requirements – Status of energy use in buildings – Estimation of energy use in a building - Heat gain and thermal performance of building envelope – Steady and non steady heat transfer through the glazed window and the wall – Standards for thermal performance of building envelope – Evaluation of the overall thermal transfer – Concepts of window management.

UNIT V ENERGY MANAGEMENT OPTIONS Lecture Hrs:12

Energy audit and energy targeting – Technological options for energy management – Modifications for energy efficient buildings for Indian conditions.

Textbooks:

1. Heating and Cooling of Buildings – Design for Efficiency, J. Krieder and A. rabl, McGraw Hill, 1994.

2. Mechanical and Electrical Equipment for Buildings, S. M. Guinnes and Reynolds, Wiley, 1989.

Reference Books:

- 1. Energy Design for Architects, Shaw, Aee Energy Books, 1991.
- 2. Energy Conservation in Buildings Royal Institute of Architecture, Canada.
- 3. Publication of CBRI, Roorkee Energy Management in Buildings.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR **B.Tech (EEE)** LTPC

3 1 0 4

(20A02M03) ENERGY CONVERSION SYSTEMS

Course Objectives:

The student able to:

- Understand basic concepts involved in energy conversion process •
- Apply the knowledge to choose different conversion topologies •
- Analyze conversion system behaviour •
- Create an Energy conversion system

Course Outcomes:

- Understand the basic concepts of Energy conversion systems, types of converters, Energy • storage devices, Fuel cells and different energy storage technologies
- Apply the acquired knowledge to choose proper techniques, different converters, energy • storage devices
- Analyze energy conversion systems and technologies •
- Design efficient energy conversion system at most

CONVERSION CYCLES UNIT I

Lecture Hrs:12 Reversible and irreversible cycles - Thermodynamics analysis of Carnot - Stirling - Ericsson - Otto - Diesel - Dual - Atkinson - Brayton, Rankine.

UNIT II DIFFERENT TYPES OF CONVERTERS

Fundamentals of converters - Thermoelectric Converters - Thermionic converters - MHD - Ferro electric converter - Nernst effect generator.

ENERGY STORAGE DEVICES UNIT III

Different types of Batteries - Working - Performance governing parameters - Hydrogen energy -Solar photovoltaic cells.

FUEL CELLS UNIT IV

Basics - Types - Working - Comparative analysis - Thermodynamics and kinetics of fuel cell process - Performance of fuel cell - Applications - Advantages and drawbacks.

ENERGY STORAGE TECHNOLOGIES UNIT V

Mechanical energy - Electrical energy - Chemical energy - Thermal Energy.

Textbooks:

1. Principles of Energy Conversion, Archie.W.Culp, McGraw-Hill Inc., 1991, Singapore.

2. Direct Energy Conversion, Kettari, M.A. Addison-Wesley Pub. Co 1997.

Reference Books:

1. Fuel Cell and Their Applications, Kordesch. K, and Simader.G, Wiley-Vch, Germany 1996. 2. Fuel Cells: Theory and Application, Hart A.B and Womack, Prentice Hall Newyork Ltd., London 1989.

Online Learning Resources:

Lecture Hrs:14

Lecture Hrs:12

Lecture Hrs:12

Lecture Hrs:14

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR **B.Tech (EEE)** LTPC

3 104

(20A02M04) ENERGY SCENARIO AND ENERGY POLICY

Course Objectives:

The student able to:

- Understand the basic concepts of Energy scenario and Energy policy
- Apply the concepts to strengthen energy system
- Analyze the different scenarios around the globe •
- Implementation of suitable Energy policy for existing systems •

Course Outcomes:

- Understand the Energy scenario in global market, different countries energy policies, Energy scenario in India, Energy policies and Future energy aspects
- Apply the concepts to enhance present day energy scenario and communicate the same to society
- Analyze different energy scenarios and energy policies
- Implement different policies and different new energy technologies as per the global guidelines

GLOBAL ENERGY SCENARIO Lecture Hrs:14 UNIT I

Role of energy in economic development and social transformation - Energy and GDP - GNP and its dynamics - Energy sources and overall Energy demand and availability - Energy consumption in various sectors and its changing pattern - Depletion of energy sources and impact exponential rise in energy consumption on economies of countries

ENERGY POLICIES UNIT II

International Energy Polices of G-8 Countries - G-20 Countries - OPEC Countries - EU Countries - International Energy Treaties (Rio, Montreal, Kyoto) - INDO-US Nuclear Deal.

UNIT III **INDIAN ENERGY SCENARIO** Energy resources and Sector wise energy Consumption pattern Impact of energy on economy and development - National and State Level Energy polices and Issues - Status of Nuclear and Renewable Energy and Power Sector reforms.

UNIT IV **ENERGY POLICY** Lecture Hrs:12 Global Energy Issues - Energy Security - Energy Vision Energy Pricing and Impact of Global Variations Energy Productivity (National and Sector wise productivity).

ENERGY CONSERVATION UNIT V

Act – 2001 and its features - Electricity Act – 2003 and its features - Energy Crisis - Future energy options - Need for use of new and renewable energy sources - Energy for Sustainable development.

Textbooks:

1. Energy for a sustainable World: Jose Golden berg, Thomas Johan son, AKN. Reddy, Robert Williams (Wiley Eastern).

2. Energy Policy, B.V. Desai (Wiley Eastern)

Reference Books:

1. Modeling approach to long term demand and energy implication, J.K.Parikh

2. Energy Policy and Planning, B.Bukhootsow

3. TEDDY Year Book Published by Tata Energy Research Institute(TERI) World Energy Resources, Charles E. Brown, 'International Energy Outlook' - EIA annual Publication 4. BEE Reference book: no. 1/2/3/4

Online Learning Resources: 1. https://nptel.ac.in/courses/109106161

Lecture Hrs:12

Lecture Hrs:12

Lecture Hrs:14

3 1 0 4

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ME) L T P C

(20A03M11) MATERIAL SCIENCE FOR ENGINEERING

Course Objectives:

- To teach the principles of physical metallurgy, i.e. crystallography of metals, constitution of alloys, phase diagrams and heat treatment of steels.
- To Explain the methods to change the properties of materials through heat treatment processes.
- To Expose commercially important metals and alloys (both ferrous and nonferrous) with engineering constraints.
- To Familiarize properties and applications of ceramics, polymers and composite materials.

Course Outcomes (CO):

- Explain the principles of binary phases
- Apply heat treatment to different applications
- Select steels and cast irons for a given application
- Utilize nonferrous metals and alloys in engineering
- Choose composites for various applications
- Assess the properties of Nano-scale materials and their applications

UNIT - I Structure of Metals & Constitution of Alloys

Structure of Metals: Crystal Structures: Unit cells, Metallic crystal structures, Imperfection in solids: Point, Line, interstitial and volume defects; dislocation strengthening mechanisms and slip systems, critically resolved shear stress.

Constitution of Alloys: Necessity of Alloying, substitutional and interstitial solid solutions – Phasediagrams: Interpretation of binary phase diagrams and microstructure development; eutectic, peritectic, peritectoid and monotectic reactions. Iron – Iron – carbide diagram and microstructural aspects of ferrite, cementite, austenite, ledeburite, and cast iron.

UNIT - II Heat Treatment of Steels:

Heat Treatment of Steels: Annealing, tempering, normalizing and spheroidizing, isothermal transformation diagrams for Fe-Fe₃Calloys and microstructure development. Continious cooling curves and interpretation of final microstructures and properties- austempering, martempering, case hardening, carburizing, nitriding, cyaniding, carbo-nitriding, flame and induction hardening, and vacuum and plasma hardening

UNIT - III Steels and Cast Irons

Steels: Plain carbon steels, use and limitations of plain carbon steels. AISI& BIS classification of steels. Classification of alloys steels. Microstructure, properties and applications of alloy steels-stainless steels and tool steels.

Cast irons: Microstructure, properties and applications of white cast iron, malleable cast iron, grey cast iron, nodular cast iron and alloy cast irons.

UNIT - IV **Non-ferrous Metals and Alloys** 10 Hrs **Non-ferrous Metals and Alloys:** Microstructure, properties and applications of copper and its alloys, aluminium and its alloys. Study of Al – Cuphase diagram, precipitation hardening. Microstructure, properties and applications of titanium and its alloys.

UNIT - V Ceramics, Polymers and Composites:

Ceramics, Polymers and Composites: Structure, properties and applications of ceramics, polymers and composites. Introduction to super alloys and nanomaterials. **Textbooks:**

8 Hrs

8 Hrs

10 Hrs

- 1. V.Raghavan, Material Science and Engineering, 5/e, Prentice Hall of India, 2004.
- 2. William D. Callister Jr, Materials Science and Engineering: An Introduction, 8/e, John Wiley Sons, 2009.

Reference Books:

- 1. Y. Lakhtin, Engineering Physical Metallurgy, University Press of the Pacific, 2000.
- 2. S.H.Avner, Introduction to Physical Metallurgy, 2/e, Tata McGraw-Hill, 1997.
- 3. L.H.VanVlack, Elements of Material Science and Engineering, 6/e, Pearson Education, 2008.
- 4. George E.Dieter, Mechanical Metallurgy, 3/e, McGraw-Hill, 2013.

- https://nptel.ac.in/courses/113102080
- https://www.digimat.in/nptel/courses/video/113102080/L01.html

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ME) L T P C 3 1 0 4

(20A03M12) COMPUTER AIDED MACHINEDRAWING

Course Objectives:

- Introduce conventional representations of material and machine components.
- Train to use software for 2D and 3D modeling.
- Familiarize with thread profiles, riveted, welded and key joints.
- Teach solid modeling of machine parts and their sections.
- Explain creation of 2D assembly drawings from 3D assemblies.

Course Outcomes (CO):

- Demonstrate the conventional representations of materials and machine components
- Model riveted, welded and key joints using CAD system
- Create solid models and sectional views of machine components
- Generate solid models of machine parts and assemble them
- Translate 3D assemblies into 2D drawings

UNIT - I Isometric and Orthographic Projections

Principles of isometric projection- Isometric Scale-Isometric Views- Conventions- Isometric Views of lines, Planes Figures, Simple and Compound Solids-Conversion of isometric Projections/Views of Orthographic Views-Conventions.

UNIT - II Perspective projections

Perspective projections –Planes and simple solids. Vanishing point Method only.

UNIT - III Detachable joints & Permanent Joint

Drawing of thread profiles, hexagonal and square-headed bolts and nuts, bolted joint, bolted joint with washer and locknut, stud joint, screw joint.

Riveted joints: Drawing of rivet, lap joint, butt joint with single strap, single riveted, double riveted double strap joints.

Welded joints: Lap joint and T joint with fillet, butt joint with conventions.

UNIT - IV Keys and Couplings

Keys: Taper key, sunk taper key, round key, saddle key, feather key, woodruff key. **Shaft coupling:** bushed pin-type flange coupling, universal joint, Oldhams' coupling. **Sectional views:** Creating solid models of complex machine parts and create sectional views.

UNIT - V Assembly drawings:

Piston, connecting rod, Eccentric, Screw jack, Plumber block, Pipe vice, Clamping device, Tail stock, Air Cock, Machine vice, Carburetor.

Textbooks:

- 1. K.L.Narayana, P.Kannaiah, A text book on Machine Drawing, SciTech Publications, 2014.
- 2. Cecil Jensen, Jay Helsel and Donald D.Voisinet, Computer Aided Engineering Drawing, Tata Mcgraw-Hill, NY, 2000.

Reference Books:

- 1. James Barclay, Brain Griffiths, Engineering Drawing for Manufacture, Kogan Page Science, 2003.
- 2. N.D.Bhatt, Machine Drawing, Charotar, 50/e, 2014.
- 3. K.L.Narayana, Production Drawing, NewAge International Publishers, 3/e, 2014.

8 Hrs

8 Hrs

10 Hrs

10 Hrs

- https://www.youtube.com/watch?v=4U0kmyXT470
- https://www.youtube.com/watch?v=EA3YOMfh99M
- https://www.bietdvg.edu/media/department/ME/data/learningmaterials/CAMD_MANUAL18ME36A_FINAL.pdf
- https://www.youtube.com/watch?v=4vw1GpigfMk

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ME) L T P C

3 1 0 4

(20A03M13) 3D PRINTING MATERIALS

Course Objectives:

- Explain the need of 3D Printing Technology.
- Familiarize manufacturing of polymer components.
- Describe the manufacture of products through powder metallurgy.
- Impart knowledge on various material characterization techniques.

Course Outcomes (CO):

After successful completion of the course, the student will be able to

- Development mechanical components with powder metallurgy technique
- Select materials for Additive Manufacturing
- Explain the concept of material characterization
- Understand the concepts of powder shaping and sintering

UNIT - I Introduction

Need for AM, Historical Development, Fundamentals of AM, AM Process Chain, Advantages and Limitations of AM, Classification of AM Systems, Materials used in AM

UNIT - II Polymers Basic Concepts

Polymers Basic Concepts: Introduction to Polymers used for additive manufacturing: polyamide, PF resin, polyesters etc. Classification of polymers, Concept of functionality, Polydispersity and Molecular weight [MW], Molecular Weight Distribution [MWD]

Polymer Processing: Methods of spinning for additive manufacturing: Wet spinning, Dry spinning. Biopolymers, Compatibility issues with polymers. Moulding and casting of polymers, Polymer processing techniques.

UNIT - III **Powder Metallurgy**

Powder Metallurgy Basic Concepts: Introduction and History of Powder Metallurgy (PM), Present and Future Trends of PM, Different Mechanical and Chemical methods, Atomization of Powder, other emerging processes

UNIT - IV Powder Shaping and Sintering

Powder Shaping: Particle Packing Modifications, Lubricants & Binders, Powder Compaction & Process Variables, Pressure & Density Distribution during Compaction, Isotactic Pressing, Injection Moulding, Powder Extrusion, Slip Casting, Tape Casting.

Sintering: Theory of Sintering, Sintering of Single & Mixed Phase Powder, Liquid Phase Sintering Modern Sintering Techniques, Physical & Mechanical Properties Evaluation, Structure-Property Correlation Study, Modern Sintering techniques, Defects Analysis of Sintered Components

UNIT - V Introduction to Characterization

Characterization Techniques: Particle Size & Shape Distribution, Electron Microscopy of Powder, Interparticle Friction, Compression ability, Powder Structure, Chemical Characterization. Microstructures of Powder by Different techniques characterization methods -BET surface area analyzer, Atomic force Microscopy (AFM), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray Diffraction (XRD), Small Angle X-ray Scattering (SAXS) and High Power X-ray.

Textbooks:

- 1. Chee Kai Chua, Kah Fai Leong, "3D Printing and Additive Manufacturing Principles and Applications" 5/e, World Scientific.
- 2. G Odian Principles of Polymerization, Wiley Inerscience John Wiley and Sons, 4/e, 2005.

10 Hrs

10 Hrs

10 Hrs

10 Hrs de PF

Reference Books:

- 1. Mark James Jackson, Microfabrication and Nanomanufacturing, CRC Press, 2005.
- 2. Powder Metallurgy Technology, Cambridge International Science Publishing, 2002.
- 3. P. C. Angelo and R. Subramanian: Powder Metallurgy- Science, Technology and Applications, PHI, New Delhi, 2008.
- 4. Ray F. Egerton , Physical Principles of Electron Microscopy: An Introduction to TEM, SEM, and AEM , Springer, 2005.

- https://nptel.ac.in/courses/112104265
- https://nptel.ac.in/courses/112103306
- https://nptel.ac.in/courses/108108115
- https://onlinecourses.nptel.ac.in/noc20_mg70/preview
- https://nptel.ac.in/courses/116102052

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ME) L T P C

3 1 0 4

(20A03M14) APPLICATIONS OF 3D PRINTING

Course Objectives:

- Explain the typical application areas of additive manufacturing.
- Familiarize with the applications of 3D printing in Design and Engineering area.
- Describe the concepts of manufacturing of bio-medical implants.
- Impart knowledge on Applications in Automotive, Civil and other fields.

Course Outcomes (CO):

After successful completion of the course, the student will be able to

- Design CAD model and verification of CAD model
- Select type of 3D printing technology for different applications

• Identify the various applications of 3D printing in manufacturing and aerospace

- Explain the various Applications of 3D printing in Automotive, Civil and other fields
- List the various applications of 3D printing technology

UNIT - I Typical application areas of Additive Manufacturing: 8 Hrs

Finishing Processes- Cutting Processes, Sand-Blasting and Polishing, Coating, Painting.

UNIT - II **Applications in Design and Engineering:** 10 Hrs **Applications in Design**: CAD Model Verification, Visualizing Objects, Proof of Concept, Marketing and Commercial Applications,

Applications in Engineering Analysis and Planning: Scaling, Form and Fit, Flow Analysis, Stress Analysis, Mock-Up Parts, Pre-Production Parts, Diagnostic and Surgical Operation Planning, Design and Fabrication of Custom Prosthesis and Implant,

UNIT - III Applications in Manufacturing and Tooling:

Classification of rapid tooling, Direct Soft Tooling, Indirect Soft Tooling, Direct Hard Tooling.

UNIT - IV Applications in Bio-medical and Aerospace:

Operation Planning for Cancerous Brain Tumor Surgery, Planning Reconstructive Surgery with RP Technology, Craniofacial Reconstructive Surgery Planning, Biopsy Needle Housing, Knee Implants, Scaffolds for Tissue Engineering, Customized Tracheobronchial Stents, Inter-Vertebral Spacers, Cranium Implant, Design Verification of an Airline Electrical Generator, Engine Components for Fanjet Engine, Fabrication of Flight-Certified Production Castings.

UNIT - V Applications in Automotive, Civil and other fields 10 Hrs Prototyping Complex Gearbox Housing for Design Verification, Prototyping Advanced Driver Control System with Stereolithography, Creating Cast Metal Engine Block with RP Process, Using Stereolithography to Produce Production Tooling, Civil engineering- 3D printing in house construction, Development of Contour Crafting Process, Building Disaster Relief Shelters, Metal Frames For Solid Structures, other fields- Coin industry, Jewelry Industry, tableware industry.

Textbooks:

- 1. Chee Kai Chua, Kah Fai Leong, "3D Printing and Additive Manufacturing Principles and Applications" 5/e, World Scientific.
- 2. Liou W. Liou, Frank W., Liou, Rapid Prototyping and Engineering Applications: A Tool Box for Prototype Development, CRC Press, 2007.

Reference Books:

8 Hrs

- 1. Pham D.T. and Dimov S.S., Rapid Manufacturing; The Technologies and Application of RPT and Rapid Tooling, Springer, London 2001.
- 2. Gebhardt A., Rapid prototyping, Hanser Gardener Publications, 2003.
- 3. Hilton P.D. and Jacobs P.F., Rapid Tooling: Technologies and Industrial Applications, CRC Press, 2005.
- 4. RafiqNoorani, Rapid Prototyping: Principles and Applications in Manufacturing, John Wiley & Sons, 2006.

- https://www.mdpi.com/2073-4360/12/6/1334
- https://www.centropiaggio.unipi.it/sites/default/files/course/material/2013-11-29%20-%20FDM.pdf
- https://lecturenotes.in/subject/197
- https://www.cet.edu.in/noticefiles/258_Lecture%20Notes%20on%20RP-ilovepdfcompressed.pdf
- https://www.vssut.ac.in/lecture_notes/lecture1517967201.pdf
- https://www.youtube.com/watch?v=NkC8TNts4B4

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ME) LTPC

3 1 0 4

(20A03M11) MARKETING MANAGEMENT

Course Objectives:

The objectives of this course are to

- Developing an understanding of ideas and nuances of modern marketing.
- Describe the process to formulate and manage the B2B marketing strategy including all key • components.
- Explain the techniques to conduct market analysis practices including market segmentation • and targeting.
- Compare and contrast different perspectives that characterize the study of consumer behavior. •
- Explain the role of IMC in the overall marketing program.

Course Outcomes (CO):

At the end of the course student will be able to

- Knowledge of analytical skills in solving marketing related problem.
- Awareness of marketing management process
- Students will be able to identify the scope and significance of Marketing in Domain Industry •
- Students will be able to examine marketing concepts and phenomenon to current business • events In the Industry.
- Students will be able to coordinate the various marketing environment variables and interpret • them for designing marketing strategy for business firms
- Students will be able to illustrate market research skills for designing innovative marketing strategies for business firms

Introduction UNIT - I

Marketing – Definitions - Conceptual frame work – Marketing environment: Internal and External -Marketing interface with other functional areas - Production, Finance, Human Relations Management, Information System. Marketing in global environment – Prospects and Challenges.

UNIT – II **Marketing Strategy** Marketing strategy formulations - Key Drivers of Marketing Strategies - Strategies for Industrial Marketing - Consumer Marketing - Services marketing - Competitor analysis - Analysis of consumer and industrial markets - Strategic Marketing Mix components.

Marketing Mix Decisions UNIT - III Product planning and development – Product life cycle – New product Development and Management - Market Segmentation - Targeting and Positioning - Channel Management - Advertising and sales promotions - Pricing Objectives, Policies and methods.

UNIT - IV **Buver Behaviour**

Understanding industrial and individual buyer behaviour - Influencing factors - Buyer Behaviour Models - Online buyer behaviour - Building and measuring customer satisfaction - Customer relationships management – Customer acquisition, Retaining, Defection.

Marketing Research & Trends In Marketing UNIT – V 10 Hrs Marketing Information System - Research Process - Concepts and applications: Product -Advertising – Promotion – Consumer Behaviour – Retail research – Customer driven organizations -Cause related marketing - Ethics in marketing -Online marketing trends.

Textbooks:

- 1. Philip Kotler and Kevin Lane Keller, Marketing Management, PHI 14/e, 2012
- 2. Paul Baines, Chris Fill and Kelly Page, Marketing, Oxford University Press, 2/e,2011.
- 3. Kotler, Philip(2002) Marketing Management, Millennium Edition. Intl ed. US: Prentice Hall, 2002

Reference Books:

12 Hrs

8 Hrs

8 Hrs

- 1. Philip Kotler and Kevin Lane Keller, Marketing Management, PHI 14th Edition, 2012
- 2. KS Chandrasekar, "Marketing management-Text and Cases", Tata McGraw Hill, First edition, 2010
- 3. Lamb, hair, Sharma, Mc Daniel– Marketing An Innovative approach to learning and teaching-A south Asian perspective, Cengage Learning 2012
- 4. Paul Baines, Chris Fill and Kelly Page, Marketing, Oxford University Press, 2/e,2011.
- 5. MichealR.Czinkota& Masaaki Kotabe, Marketing Management, Cengage, 2000.

- https://nptel.ac.in/courses/110104068
- https://www.youtube.com/watch?v=uTIfDBH80HU&list=PLPjSqITyvDeUgSjU9XcEdZmd5 Epz1L-Yn
- https://www.youtube.com/watch?v=XD7Ie16qMT4&list=PLNsppmbLKJ8JSbzCxO8TYG8H DxxO5sSmV

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ME) L T P C 3 1 0 4

(20A03M22) PRODUCTION PLANNING AND CONTROL

Course Objectives:

The objectives of this course are to

- To understand the various components and functions of production planning and control such as work study, product planning, process planning, production scheduling, Inventory Control.
- To know the recent trends like manufacturing requirement Planning (MRP II) and Enterprise Resource Planning (ERP).

Course Outcomes (CO):

At the end of the course student will be able to

- Upon completion of this course, the students can able to prepare production planning and control activities such as work study, product planning, production scheduling, Inventory Control.
- They can plan manufacturing requirements manufacturing requirement Planning (MRP II) and Enterprise Resource Planning (ERP).

UNIT - I Introduction

Objectives and benefits of planning and control-Functions of production control-Types of production- jobbatch and continuous-Product development and design-Marketing aspect - Functional aspects- Operational Aspect-Durability and dependability aspect aesthetic aspect. Profit consideration- Standardization, Simplification & specialization- Break even analysis-Economics of a new design.

UNIT - II Work Study

Method study, basic procedure-Selection-Recording of process - Critical analysis, Development - Implementation - Micro motion and memo motion study – work measurement - Techniques of work measurement - Time study - Production study - Work sampling - Synthesis from standard data - Predetermined motion time standards.

UNIT - III Product Planning And Process Planning

Product planning-Extending the original product information-Value Analysis-Problems in lack of product planning-Process planning and routing-Pre requisite information needed for process planning- Steps in process planning-Quantity determination in batch production-Machine capacity, balancing- Analysis of process capabilities in a multi-product system.

UNIT - IV Production Scheduling

Production Control Systems-Loading and scheduling-Master Scheduling-Scheduling rules-Gantt charts-Perpetual loading-Basic scheduling problems - Line of balance – Flow production scheduling- Batch production scheduling-Product sequencing – Production Control systems- Periodic batch control-Material requirement planning kanban – Dispatching-Progress reporting and expediting- Manufacturing lead time-Techniques for aligning completion times and due dates.

UNIT - VInventory Control And Recent Trends In Ppc10 HrsInventory control-Purpose of holding stock-Effect of demand on inventories-Ordering procedures. Two binsystem - Ordering cycle system-Determination of Economic order quantity and economic lot size- ABCanalysis - Recorder Procedure-Introduction to computer integrated production planning systems- elementsof Just in Time Systems-Fundamentals of MRP II and ERP.

Textbooks:

- 1. James. B. Dilworth," Operations management Design, Planning and Control for manufacturing and services" McGraw Hill International edition 1992.
- 2. MartandTelsang, "Industrial Engineering and Production Management", First edition, S. Chand and Company, 2000.

Reference Books:

- 1. Chary. S.N., "Theory and Problems in Production & Operations Management", Tata McGraw Hill, 1995.
- 2. Elwood S.Buffa, and Rakesh K.Sarin, "Modern Production / Operations Management", 8th

8 Hrs

12 Hrs

8 Hrs

Edition John Wiley and Sons, 2000.

- 3. Jain. K.C. & Aggarwal. L.N., "Production Planning Control and Industrial Management", Khanna Publishers, 1990.
- 4. Kanishka Bedi, "Production and Operations management", 2nd Edition, Oxford university press, 2007.
- 5. Melynk, Denzler, "Operations management A value driven approach" Irwin McGraw hill.
- 6. Norman Gaither, G. Frazier, "Operations Management" 9th Edition, Thomson learning IE, 2007
- 7. Samson Eilon, "Elements of Production Planning and Control", Universal Book Corpn. 1984
- 8. Upendra Kachru, "Production and Operations Management Text and cases" 1st Edition, Excel books 2007

- https://www.youtube.com/watch?v=yYIVumq6sVM
- https://nptel.ac.in/courses/110107141
- https://nptel.ac.in/courses/112107143
- https://www.youtube.com/watch?v=Q7KpUY8spmM

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ME) L T P C

$\begin{array}{c} 2 \\ 3 \\ 1 \\ 0 \\ 4 \end{array}$

(20A03M23) CUSTOMER RELATIONSHIP MANAGEMENT

Course Objectives:

The objectives of this course are to

- Introduce basic concepts and principles of customer relationship management (CRM).
- Familiarize with appreciate the role and changing face of CRM as an IT enabled function.
- Describe concept of managing and sharing customer data.
- Explain the principles of CRM links in e-Business.
- Expose the students on Enterprise resource planning (ERP), supply chain management (SCM) and Supplier relationship management (SRM).

Course Outcomes (CO):

At the end of the course student will be able to

- Summarizes the how CRM works in industries
- Discuss about market basket analysis (MBA)
- Develop the skills related to predict the behaviour and retention of the customer
- Explain the concepts of customer relationship management

UNIT – I CRM concepts

CRM concepts - Acquiring customers, - Customer loyalty and optimizing customer relationships - CRM defined - success factors, the three levels of Service/ Sales Profiling - Service Level Agreements (SLAs), creating and managing effective SLAs.

UNIT - II CRM in Marketing

CRM in Marketing - One-to-one Relationship Marketing - Cross Selling & Up Selling - Customer Retention, Behaviour Prediction - Customer Profitability & Value Modeling, - Channel Optimization - Event-based marketing. - CRM and Customer Service - The Call Centre, Call Scripting - Customer Satisfaction Measurement.

UNIT - III Sales Force Automation

Sales Force Automation - Sales Process, Activity, Contact- Lead and Knowledge Management - Field Force Automation. - CRM links in e-Business - E-Commerce and Customer Relationships on the Internet - Enterprise Resource Planning (ERP), - Supply Chain Management (SCM), - Supplier Relationship Management (SRM), - Partner relationship Management (PRM).

UNIT - IV Analytical CRM

Analytical CRM - Managing and sharing customer data - Customer information databases - Ethics and legalities of data use - Data Warehousing and Data Mining concepts - Data analysis - Market Basket Analysis (MBA), Click stream Analysis, Personalization and Collaborative Filtering.

UNIT – V CRM Implementation

CRM Implementation - Defining success factors - Preparing a business plan requirements, justification and processes. - Choosing CRM tools - Defining functionalities - Homegrown versus out-sourced approaches - Managing customer relationships - conflict, complacency, Resetting the CRM strategy. Selling CRM internally - CRM development Team - Scoping and prioritizing - Development and delivery - Measurement.

Textbooks:

- 1. Alok Kumar Rai, Customer Relationship Management Concept & Cases, Prentice Hall Of India Private Limted, New Delhi. 2011.
- 2. S. Shanmugasundaram, Customer RelaTionship Management, Prentice Hall Of India Private Limted, New Delhi, 2008.

8 Hrs

8 Hrs

8 Hrs

8 Hrs

Reference Books:

- 1. Kaushik Mukherjee, Customer Relationship Management, Prentice Hall Of India Private Limted, New Delhi, 2008.
- 2. Jagdish Seth, Et Al, Customer Relationship Management.
- 3. V. Kumar & Werner J., Customer Relationship Management, Willey India, 2008.

- https://nptel.ac.in/courses/110105145
- https://onlinecourses.swayam2.ac.in/imb19_mg10/preview
- https://www.classcentral.com/course/swayam-customer-relationship-management-13977
- https://www.edx.org/course/customer-relationship-management

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ME) LTPC

3 1 0 4

(20A03M24) SIX SIGMA AND LEAN MANUFACTURING

Course Objectives:

- Introduce the students, the basic concepts of six sigma and lean manufacturing.
- Expose with various quality issues in Inspection.
- Gain Knowledge on quality control and its applications to real time. •
- Know the extent of cellular manufacturing and 5S. •
- Understand the importance of Quality standards in manufacturing

Course Outcomes (CO):

At the end of this course, the student will be able to

- summarize various techniques that are related to the six-sigma and lean manufacturing
- outline the concepts of cellular manufacturing, JIT and TPM •
- illustrate the principles and implementation of 5S techniques •
- discus procedure and principles of value stream mapping
- determine the reliability function using six-sigma •

UNIT - I **Introduction to Six-Sigma** Introduction to Six-Sigma-Probabilistic models-Six Sigma measures-Yield-DPMO-Quality level-Reliability function using Six-Sigma-MTTF using Six Sigma-Maintenance free operating period-Availability using Six-Sigma-Point availability-Achieved availability-Operational Availability-Examples

UNIT - II The Elements of Six Sigma and their Determination 8 Hrs The Elements of Six Sigma and their Determination-The Ouality Measurement Techniques: SQC, Six Sigma, Cp and Cpk- The Statistical quality control (SQC) methods-The relationship of control charts and six sigma-The process capability index (Cp)-Six sigma approach-Six sigma and the 1.5 σ shift-The Cpk Approach Versus Six Sigma-Cpk and process average shift- Negative Cpk-Choosing six sigma or Cpk-Setting the process capability index-Examples.

UNIT - III **Introduction To Lean Manufacturing** 8 Hrs Introduction To Lean Manufacturing: Conventional Manufacturing versus Lean Manufacturing - Principles of Lean Manufacturing - Basic elements of lean manufacturing - Introduction to LM Tools.

UNIT - IV Cellular Manufacturing, JIT, TPM 8 Hrs Cellular Manufacturing, JIT, TPM: Cellular Manufacturing - Types of Layout, Principles of Cell layout, Implementation. JIT – Principles of JIT and Implementation of Kanban. TPM – Pillars of TPM, Principles and implementation of TPM.

UNIT - V Set Up Time Reduction, TQM, 5S, VSM 10 8 Hrs Set Up Time Reduction, TQM, 5S, VSM 10

Set up time reduction – Definition, philosophies and reduction approaches. TQM – Principles and implementation. 5S Principles and implementation - Value stream mapping - Procedure and principles.

Textbooks:

- 1. U Dinesh Kumar, Crocker, Chitra and HaritheSaranga, Reliability and Six Sigma, Springer Publishers.
- 2. Sung H. Park, Six Sigma for Quality and Productivity Promotion, Asian Productivity Organization

Reference Books:

- 1. Sammy G. Shina, Six Sigma for Electronics Design and Manufacturing, McGraw-Hill.
- 2. Design and Analysis of Lean Production Systems, Ronald G. Askin& Jeffrey B. Goldberg, John Wiley & Sons, 2003.
- 3. Mikell P. Groover (2002) _Automation, Production Systems and CIM.

4. Rother M. and Shook J, 1999 Learning to See: Value Stream Mapping to Add Value and Eliminate Muda', Lean Enterprise Institute, Brookline, MA.

- https://nptel.ac.in/courses/110105039
- https://nptel.ac.in/courses/110105123
- https://www.classcentral.com/course/swayam-six-sigma-7967
- https://ocw.mit.edu/courses/engineering-systems-division/esd-60-lean-six-sigma-processessummer-2004/lecture-notes/
- https://old.amu.ac.in/emp/studym/100012762.pdf
- http://www.snscourseware.org/snscenew/notes.php?cw=CW_5d206368880cf
- https://www.sixsigmacouncil.org/wp-content/uploads/2018/08/Six-Sigma-A-Complete-Step-by-Step-Guide.pdf

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE) L T P C 3 0 24

(20A04M01T/P) INTRODUCTION TO INTERNET OF THINGS

Course Objectives:

Students will understand the concepts of Internet of Things and can able to build IoT applications. **Course Outcomes:**

- Understand the concepts of Internet of Things
- Identify hardware and software components of Internet of Things
- Analyze basic communication protocols
- Design IoT applications in different domain and be able to analyze their performance

UNIT 1

Introduction to IoT: Architectural overview, Design principles and needed capabilities, IoT Applications, Sensing, Actuation, Basics of Networking, M2M and IoT Technology Fundamentals-Devices and gateways, Data management, Business processes in IoT, Role of cloud in IoT

UNIT II

Elements of IoT: Hardware components – computing (Arduino, Raspberry Pi), communication, Sensing, Actuation, I/O interfaces Software Components- Programming APIs (Using python/Arduino) for communication protocols-MQTT, Zigbee, Bluetooth, CoAP, UDP, TCP

UNIT III

Sensing and Actuation: Definition of Sensor, Sensor features, Resolution, Classes, Different types of sensors, Actuator, Different types of Actuators, purpose of Sensors and Actuators in IoT

UNIT IV

IoT Application Development: Solution frame work for IoT Applications-Implementation of Device integration, Data acquisition and Integration, Device data storage on cloud/local server, Authentication, authorization of Devices

UNIT V

IoT Case Studies: IoT Case studies and mini projects based on industrial Automation, Transportation, Agriculture, Healthcare, Home Automation.

Textbooks:

1. Vijay Madisetti, ArshdeepBahga, "Internet of Things a Hands-On- Approach", 2014.

References:

- 1. Dr SRN Reddy, RachitThukral and Manasi Mishra ," Introduction to Internet of Things": A practical Approach" ETI Labs
- 2. Raj Kamal, "Internet of Things: Architecture and Design", McGraw Hill
- 3. Adrian McEwen, "Designing the Internet of Things", Wiley Publishers, 2013

List of Experiments:

- 1. Setting up the Keil for ARM IDE and STM32Cube IDE.
- 2. GPIO programming and interfacing
- 3. Interacting with basic sensors
- 4. Interacting with sensors through I2C and SPI protocols
- 5. Interacting with basic actuators
- 6. LCD and Keyboard interfacing
- 7. Interrupt and exception Programming
- 8. Posting and retrieving the sensor data to a cloud platform
- 9. Securing online data
- 10. Send text messages and Email notifications
- 11. Automation with IFTTT
- 12. Cloud M2M with IFTTT (Monitor Water Quality)

Software and Hardware Requirements:

Keil for ARM IDE, STM32Cube IDE, STM32 Nucleo Development Board, NucleoWiFi expansion board, Basic sensors and actuators.

Textbook:

1. STM32 Arm Programming for Embedded Systems: Using C Language with STM32F4 ARM, Muhammad Ali Mazidi, Shujen Chen, EshraghGhaemi, Microdigitaled Publishing, 2018.

JAWAHARLAL NEHRU TECNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE) L T P C

1 1 1 C 3 0 2 4

(20A04M02T/P) IOT WITH ARDUINO, ESP, AND RASPBERRY PI

Course Objective:

- To give students hands-on experience using different IoT architectures.
- To provide skills for interfacing sensors and actuators with different IoT architectures.
- To develop skills on data collection and logging in the cloud.

UNIT I

IoT- introduction and its components, IoT building blocks, Sensors and Actuators, IoT Devices, IoT boards (Arduino Uno, ESP 8266-12E Node MCU, and Raspberry Pi 3).

UNIT II

Arduino Uno – getting started with the Uno boards, blink program, connection of sensors to the Uno board, reading values of sensors from the Uno board, interrupts.

Case study: Temperature/Humidity Control; Case Study: Sending values Temperature/Humidity values to the Internet via GSM module.

UNIT III

ESP 8266-12E Node MCU – getting started with the ESP board, Micropython and Esplorer IDE, Flushing the ESP8266 board with micropython, connecting sensors to the ESP board, Connecting ESP board to WiFi, Interfacing ESP with the Cloud (REST API-GET, POST, MQTT), interrupts, comparison of ESP 32 board with the ESP 8266 board.

Case Study: Switching light on /off remotely.

Case Study: Voice-based Home Automation for switching lights on/off (Android phone – Google Assistant (Assistant <-> IFTTT), MQTT (ESP <-> IFTTT), ESP 8266 <-> Lights).

UNIT IV

Raspberry Pi 3 - Rpi3 introduction and installing the Raspbian Stretch OS, Headles Computer and Rpi3 configuration to connect through SSH via Ethernet, Headless - connecting Rpi3 remotely without Ethernet cable via SSH, IP address, Rpi 3 - Testing the GPIO pins through Scripts.

UNIT V

Raspberry Pi3 interfacing with Sensor DHT11, Raspberry pi3 python library install and reading sensor feed, 'Plug and play ' type cloud platform overview for integration to IOT devices, 'Plug and play' cloud platform for integration to IOT device - actuator (LED), Plug and play platform - Custom widget (DHT11-Sensor) integration through Python.

New -Raspeberry Pi 4 Vs Raspberry Pi3 Mobel B Comparison, LoRawan /LPWAN – Overview.

Textbooks:

1. Rao, M. (2018). Internet of Things with Raspberry Pi 3: Leverage the power of Raspberry Pi 3 and JavaScript to build exciting IoT projects. Packt Publishing Ltd.

2. Arduino for Beginners: Essential Skills Every Maker Needs, Baichtal, J. (2013).. Pearson Education.

3. Internet of Things with ESP8266, Schwartz, M. (2016).. Packt Publishing Ltd.

References:

1. "Getting started with Raspberry Pi", Richardson, M., & Wallace, S. (2012)., O'Reilly Publisher Media, Inc.

List of Experiments:

Arduino IDE (Arduino Uno and ESP8266)

- 1. Installing the Arduino IDE for Arduino Uno and ESP8266 and connecting to Wi-Fi network
- 2. Controlling the LED from a cloud dashboard
- 3. Interfacing Basic sensors and actuators
- 4. Getting and posting sensor data to social media

Micropython (ESP8266)

- 1. Flashing the microcontroller firmware and executing first program
- 2. Executing commands in the REPL
- 3. Interacting with basic sensors and actuators
- 4. MQTT on ESP8266

Raspberry Pi

- 1. Getting around Linux on the Raspberry Pi
- 2. Interfacing I/O devices using Python
- 3. Download data from a Web Server
- 4. Posting and retrieving data from cloud

Software and Hardware Requirements:

Arduino IDE, Idle IDE (Micropython, Python), Arduino Uno, ESP8266-12e NodeMCU, ESP32 development board, Raspberry Pi, WiFi expansion board (Arduino Uno), Basic sensors and actuators.

Textbook:

1. Internet of Things with ESP8266, Schwartz, M. (2016). Packt Publishing Ltd.

2. "Getting started with Raspberry Pi", Richardson, M., & Wallace, S. (2012)., O'Reilly Publisher Media, Inc.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR **B.Tech (ECE)** LTPC 3 1 0 4

(20A04M03) COMMUNICATION PROTOCOLS FOR IOT

Course Objectives:

- Discuss the characteristics, technologies, and protocols related to IoT
- Study the architecture of Arduino, and Raspberry Pi
- Demonstrate applications of IoT •
- Understand business models associated with IoT •

Course Outcomes:

- Identify the main components of Internet of Things
- Program the sensors and controller as part of IoT •
- Assess different Internet of Things technologies and their applications. •
- To learn basic circuits, sensors and interfacing, data conversion process and shield libraries • to interface with the real world
- To understand various challenges in designing IoT devices •
- Demonstrate and build the project successfully by hardware/sensor requirements, coding, • emulating and testing.

UNIT I IoT Fundamentals Lecture 8 Hrs Definition & Characteristics of IoT - Challenges and Issues - Physical Design of IoT, Logical Design of IoT - IoT Functional Blocks, Security. IoT Reference Architecture, Software Design Control Units - Communication modules - Bluetooth - Zigbee - WIFI - GPS- IOT Protocols (IPv6, 6LoWPAN, RPL, CoAP etc..), MQTT, Wired Communication, Power Sources

UNIT II Technologies behind IoT Lecture 8 Hrs Technologies behind IoT, four pillars of IOT paradigm, - RFID, Wireless Sensor Networks, SCADA (Supervisory Control and Data Acquisition), M2M - IOT Enabling Technologies - Big Data Analytics, Cloud Computing, Embedded Systems, Programming the microcontroller for IoT

UNIT III Communication Protocols for IoT Working principles of sensors – IOT deployment for Raspberry Pi /Arduino/Equivalent platform – Reading from Sensors, Communication: Connecting microcontroller with mobile devices communication through Bluetooth, WIFI and USB - Contiki OS- Cooja Simulator.

UNIT IV **Resource management in IoT**

Resource management in IoT: Clustering, Clustering for Scalability, Clustering for routing, Clustering Protocols for IOT, From the internet of things to the web of things, The Future Web of Things - Set up cloud environment -Cloud access from sensors- Data Analytics for IOT- Rest Architectures- The web of Things, Resource Identification and Identifier, Richardson Maturity Model.

UNIT V **Applications of IoT** Lecture 8 Hrs Applications of IoT, Business models for IoT, Green energy buildings and infrastructure, Smart farming, Smart retailing and Smart fleet management, Recent trends.

Textbooks:

- 1. Simone Cirani, Gianluigi Ferrari, Marco Picone, Luca Veltri. Internet of Things: Architectures, Protocols and Standards, 1stedition, Wiley Publications, 2019.
- 2. Bahga, Arshdeep, and Vijay Madisetti. Internet of Things: A hands-on approach, 1st edition, University press, 2014.

Lecture 9 Hrs

Lecture 9 Hrs

Reference Books:

- 1. Vermesan, Ovidiu, and Peter Friess, eds. Internet of things-from research and innovation to market deployment, 1st edition, Aalborg: River publishers, 2014.
- 2. Tsiatsis, Vlasios, Tsiatsis, Vlasios, Stamatis Karnouskos, Jan Holler, David Boyle, and Catherine Mulligan, Internet of Things: technologies and applications for a new age of intelligence, 2nd edition, Academic Press, 2018.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR **B.Tech (ECE)** LTPC

3 1 0 4

(20A04M03) INDUSTRIAL IOT

Course Objectives:

- Acquire theoretical knowledge on Industrial Internet of Things. •
- Apply suitable machine learning techniques for data handling and to gain knowledge from it.
- Evaluate the performance of algorithms for sensors and data transmission. •

Course Outcomes:

- Understand the characteristics of Internet of Things and its industry strategies. •
- Apply various Internet of Things models to appropriate problems.
- Identify and integrate more than one technology to enhance the performance.
- Understand the sensors and data transmission used in Internet of Things. •
- Analyse the co-occurrence of data to find interesting frequent patterns. •
- Pre-process the data before applying to any real-world problem and can evaluate its • performance.

UNIT I **Overview of Internet of Things**

Introduction, IOT Architecture, Application -based IOT protocols, Cloud Computing, Fog Computing, Sensor Cloud, Big Data.

Overview of Industry 4.0 and Industrial Internet of Things: IIoT- Prerequisites of IIOT, Basics of CPS, CPS and IIOT, Applications of IIoT.

Industrial Internet of Things UNIT II

Introduction, Industrial Internet Systems, Industrial sensing, Industrial sensing, Industrial Processes.

Business Models and Reference Architecture of IIoT: Definition of a business model, Business models of IOT, Business models of IIOT.

UNIT III **Key and On-site Technologies**

Key Technologies: Off-site Technologies- Introduction, Cloud Computing- Necessity, Cloud Computing and IIot, Industrial Cloud Platform Providers, SLA, Requirements of Industry 4.0, Fog Computing.

On-site Technologies- Introduction, Augmented Reality- History, Categorization, Applications, Virtual Reality-History, Categorization, Applications.

Sensors and Data Transmission UNIT IV

Sensors: Introduction to Sensors, Characteristics-Sensor calibration, Sensor profile, Operating voltage, Sensor Categories. Actuators: Introduction, Thermal Actuators, Hydraulic Actuators, Pneumatic Actuators, Electromechanical Actuators.

Industrial Data Transmission: Foundation fieldbus, Profibus, HART, Interbus, Bitbus.

UNIT V Machine learning and Data science, applications in healthcare

Machine Learning and Data Science in Industries: Introduction, Machine Learning, Categorization on ML, Applications and Data Science of ML in industries, Deep Learning, Applications of Deep Learning in industries.

Applications of Healthcare in Industries: Smart Devices, Advanced Technologies using in Healthcare, Open Research Issues to be Addressed.

Textbooks:

1. S. Misra, C. Roy, and A. Mukherjee, 2020. Introduction to Industrial Internet of Things and Industry 4.0. CRC Press.

Reference Books:

- 1. Industrial IoT. Available online: https://medium.com/iotforall/whatproduct-managers-needto-know-about-industrial-iot-8c92eec1d9d2
- 2. IIoT Cloud Platforms. Available online: https://fr.farnell.com/willthere-be-a-dominant-iiotcloud-platform.
- 3. Kajima, T. and Kawamura, Y., 1995. Development of a high-speed solenoid valve:

Investigation of solenoids. IEEE Transactions on industrial electronics, 42(1), pp.1-8.

- <u>https://www.coursera.org/learn/industrial-internet-of-things</u>
 https://www.coursera.org/specializations/developing-industrial-iot

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSE) LTPC

3 0 0 3

(20A05M01T) INTRODUCTION TO DATA SCIENCE

The objective of the data scientist is to explore, sort and analyze data from various sources in order to take advantage of them and reach conclusions to optimize business processes or for decision support.

Course Outcomes:

After completion of the course, students will be able to

- Develop relevant programming abilities.
- Demonstrate proficiency with statistical analysis of data.
- Develop the ability to build and assess data-based models.
- Execute statistical analyses with professional statistical software.
- Demonstrate skill in data management.
- Apply data science concepts and methods to solve problems in real-world contexts and will communicate these solutions effectively

UNIT I

Lecture 8Hrs

Getting started with Data Science: Introduction, exploring data engineering pipelines and infrastructure, applying data driven insights to business and industry

UNIT II

Lecture 9Hrs

Using Data science to extract meaning from data: Machine learning: Learning from data with your machine, Math, probability, and statistical Modeling, using clustering to subdivide data, Modeling with instances, building models that operate internet of things devices.

UNIT III

Lecture 9Hrs

Creating data visualization that clearly communicate meaning: Following the principles of data visualization design, using d3.js for data visualization, Web based applications for visualization design, exploring best practices in dashboard design, Making maps from spatial data.

UNIT IV

Lecture 8Hrs

Computing for Data science: Using python for data science, using open-source R for Data science, Using SQL in Data science, doing data science with excel and knime

UNIT V

Lecture 8Hrs

Applying domain expertise to solve real-world problems using data science: Data science for driving growth in E-Commerce, using data science to describe and predict Criminal activity, Data science tools and Applications.

Textbooks:

1. Lillian Pierson, Data Science for Dummies, 2nd edition, John Wiley& Sons, 2017

Reference Books:

- 1. Fundamentals of data science by Arvim Blum, john hope croft, Ravindran Kannan
- 2. Understanding Machine Learning: From Theory to Algorithms by shaiselvshawrtaz, shaiben David

Online Learning Resources:

Coursera: Rav Ahuja, IBM Data Science Professional Certificate course(s) NPTEL course: Python for Data Science

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSE) L T P C

$\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ 0 \\ \end{array} \\ 0 \\ \end{array}$

(20A05M01P) DATA SCIENCE LAB

Course Objectives:

- Understand the process of Importing and Exporting thedata.
- Learn how to collect, store and manage data from multiple data sources.
- Know the insights of data using statistical methods
- Identify different techniques for data analysis and data visualization.
- Discuss the applications of Data Science for real world problems.

Course Outcomes (CO):

After completion of the course, students will be able to

- Examine the process for importing and exporting the data.
- Apply appropriate data collection and pre-processing methods.
- Identify different data analysis Techniques suitable for a given applications
- Demonstrate data visualization techniques for Data Analysis.

List of Experiments:

- 1. a. Write program to create a list, manipulate and slices it.
 - b. Create a new list and add elements to it from another list, and creates a matrix from two lists
 - c. Create same a, b steps for Tuple and Dictionary
- 2. Write a program for Accessing/Importing and Exporting Data
- 3. The following table gives the size of the floor area (ha) and the price (\$A000), for 15 houses sold in the Canberra (Australia) suburb of Aranda in 1999. are

s.no	sale	prices
1	694	192.0
2	905	215.0
3	802	215.0
4	1366	274.0
5	716	112.7
6	963	185.0
7	821	212.0
8	714	220.0
9	1018	276.0
10	887	260.0
11	790	221.5
12	696	255.0
13	771	260.0
14	1006	293.0
15	1191	375.0

Explore with different formats of data and describe the procedure of storing of data Type these data into a data frame with column names area, sale and Price. (a) Plot sale. Price versus area. (b) Use the hist () command to plot a histogram of the sale prices. (c) Repeat (a) and (b) after taking logarithms of sale prices. (d) The two histograms emphasize different parts of the range of sale prices. Describe the differences

4. Develop an application to analyze Stock Market Data using Python tools

5. Given the iris dataset:

https://archive.ics.uci.edu/ml/datasets/iris

1. Compute the average petal length

2.Compute the average of all numerical columns

3.Extract the petal length outliers (i.e., those rows whose petal length is 50% longer aggregate () group by (), than the average petal length)

4. Compute the standard deviation of all columns, for each iris species

- 6. Extract the group-wise petal length outliers, i.e., find the outliers (as above) for each iris species using, and merge (). Write a python program to compute all the functionalities of the above-mentioned data
- 7. Consider the Iris data set, write a python script to arrange the attributes in hierarchical structure and perform clustering with similar attributes.
- 8. Develop an application to Analyze twitter data with Python tools.
- 9. Develop an application for Text Data Analysis using Python Tools.
- 10. Demonstrate Object detection in an image.

References:

1. Joel Grus, Data Science from Scratch, O'Reilly Publications.

2. Davy Ceilen, Introducing Data Science: Big Data, Machine Learning, and More, Using Python Tools, DreamTech Publications.

Online Learning Resources/Virtual Labs:

1. https://www.coursera.org/browse/data-science

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR **B.Tech (CSE)** LTPC

3 0 0 3

(20A05M02T) FUNDAMENTALS OF DEEP LEARNING

Course Objectives:

- This course will introduce the theoretical foundations, algorithms, methodologies, and applications of neural networks and deep learning.
- Design and develop an application-specific deep learning models and also provide the practical knowledge handling and analyzing real world applications.

Course Outcomes:

After completion of the course, students will be able to

- Differentiate machine learning and deep learning techniques
- Understand the concept of CNN and transfer learning techniques, to apply it in the classification problems
- Learned to use RNN for language modelling and time series prediction.
- Use autoencoder and deep generative models to solve problems with high dimensional data including text, image and speech.
- Design and implement various machine learning algorithms in a range of real-world applications. •

UNIT I

Introduction to Deep Learning & Architectures:

Machine Learning Vs. Deep Learning, Representation Learning, Width Vs. Depth of Neural Networks, Activation Functions: RELU, LRELU, ERELU, Unsupervised Training of Neural Networks, Restricted Boltzmann Machines, Auto Encoders,

UNIT II

Convolutional Neural Networks: Architectural Overview – Motivation - Layers – Filters – Parameter sharing – Regularization, Popular CNN Architectures: ResNet, AlexNet. Transfer Learning:

Transfer learning Techniques, Variants of CNN: DenseNet, PixelNet.

UNIT III

Sequence Modelling – Recurrent and Recursive Nets: Recurrent Neural Networks, Bidirectional RNNs - Encoder-decoder sequence to sequence architectures - BPTT for training RNN, Long Short-Term Memory Networks.

UNIT IV

Machine Learning Basics:

Learning algorithms, Maximum likelihood estimation, Building machine learning algorithm, Neural Networks Multilayer Perceptron, Back-propagation algorithm and its variants Stochastic gradient decent, Curse of Dimensionality.

UNIT V

Auto Encoders:

Under complete Autoencoders - Regularized Autoencoders - stochastic Encoders and Decoders -Contractive Encoders.

Deep Generative Models:

Deep Belief networks - Boltzmann Machines - Deep Boltzmann Machine - Generative Adversial Networks.

Textbooks:

Lecture 8 Hrs

Lecture 9 Hrs

Lecture 8 Hrs

Lecture 9 Hrs

Lecture 9 Hrs

- 1. Ian Goodfellow, YoshuaBengio, Aaron Courville, "Deep Learning", MIT Press, 2016.
- 2. Josh Patterson and Adam Gibson, "Deep learning: A practitioner's approach", O'Reilly Media, First Edition, 2017.

Reference Books:

- 1. Fundamentals of Deep Learning, Designing next-generation machine intelligence algorithms, Nikhil Buduma, O'Reilly, Shroff Publishers, 2019.
- 2. Deep learning Cook Book, Practical recipes to get started Quickly, DouweOsinga, O'Reilly, Shroff Publishers, 2019.

- 1. Coursera: Andrew Ng, Machine Learning
- 2. Edx: IBM Professional Certificate on Deep Learning
- 3. https://keras.io/datasets/
- 4. http://deeplearning.net/tutorial/deeplearning.pdf.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSE) L T P C

0 0 2 1

(20A05M02P) DEEP LEARNING FUNDAMENTALS LAB

Pre-requisite Machine learning Theory, Deep Learning Theory, Fundamentals of programming, Python programming

Course Objectives:

- Understand the context of Neural networks and deep learning.
- Introduce major Deep learning algorithms, the problem settings, and their applications to solve real world problems

Course Outcomes (CO):

After completion of the course, students will be able to

- Identify the Deep learning algorithms which are more appropriate for various types of learning tasks in various domains
- Implementing Deep learning algorithms and solve real- world problems.

List of Experiments:

- 1. Basic image processing operations: Histogram equalization, thresholding, edge detection, data augmentation, morphological operations
- 2. Implement SVM/SoftMax classifier for CIFAR-10 dataset:
 - (i) using KNN,
 - (ii) using 3-layer neural network
- 3. Study the effect of batch normalization and dropout in neural network classifier
- 4. Familiarization of image labelling tools for object detection, segmentation
- 5. Image segmentation using Mask RCNN, UNet, SegNet
- 6. Object detection with single-stage and two-stage detectors (Yolo, SSD, FRCNN, etc.)
- 7. Image Captioning with Vanilla RNNs
- 8. Image Captioning with LSTMs
- 9. Network Visualization: Saliency maps, Class Visualization
- 10. Generative Adversarial Networks
- 11. Chatbot using bi-directional LSTMs
- 12. Familiarization of cloud-based computing like Google colab

References:

1. "Deep Learning (Adaptive Computation and Machine Learning series)", Yoshua Bengio, 2016.

Online Learning Resources/Virtual Labs:

- 1. Introduction to Deep Learning Course | Introduction to Deep Learning Course (rses-dl-course.github.io)
- 2. Deep Learning | Introduction to Long Short-Term Memory GeeksforGeeks

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (CSE)

(20A05M03) PRINCIPLES OF SOFTWARE DEVELOPMENT & OPERATIONS Course Objectives:

- Understand collaboration and productivity by automating infrastructure and workflows
- Familiarize with continuous measuring applications performance

Course Outcomes:

After completion of the course, students will be able to

- Enumerate the principles of continuous development and deployment, automation of
- configuration management, inter-team collaboration, and IT serviceability
- Describe DevOps &DevSecOps methodologies and their key concepts
- Illustrate the types of version control systems, continuous integration tools,
- continuous monitoring tools, and cloud models
- Set up complete private infrastructure using version control systems and CI/CD tools

UNIT I

Lecture 8Hrs

Phases of Software Development life cycle. Values and principles of agile software development

UNIT II

Lecture 9Hrs

Fundamentals of DevOps: Architecture, Deployments, Orchestration, Need, Instance of applications, DevOps delivery pipeline, DevOps eco system.

UNIT III

Lecture 9Hrs

DevOps adoption in projects: Technology aspects, Agiling capabilities, Tool stack implementation, People aspect, processes

UNIT IV

Lecture 8Hrs

CI/CD: Introduction to Continuous Integration, Continuous Delivery and Deployment, Benefits of CI/CD, Metrics to track CICD practices

UNIT V

Lecture 8Hrs

Devops Maturity Model: Key factors of DevOps maturity model, stages of Devops maturity model, DevOps maturity Assessment

Textbooks:

- The DevOps Handbook: How to Create World-Class Agility, Reliability, and Security in Technology Organizations, Gene Kim, John Willis, Patrick Debois, Jez Humb,1st Edition, O'Reilly publications,2016.
- 2. What is Devops? Infrastructure as code, 1st Edition, Mike Loukides, O'Reilly publications,2012.

Reference Books:

- 1. Building a DevOps Culture, 1st Edition, Mandi Walls, O'Reilly publications, 2013.
- 2. The DevOps 2.0 Toolkit: Automating the Continuous Deployment Pipeline with Containerized Microservices, 1st Edition, Viktor Farcic, CreateSpace Independent Publishing Platform publications,2016
- 3. Continuous Delivery: Reliable Software Releases Through Build, Test, and Deployment Automation, 1st Edition, Jez Humble and David Farley,2010.
- Achieving DevOps: A Novel About Delivering the Best of Agile, DevOps, and microservices, 1st Edition, Dave Harrison, Knox Lively, Apress publications, 2019

- Online Learning Resources: 1. https://www.javatpoint.com/devops
- https://github.com/nkatre/Free-DevOps-Books-1/blob
 Coursera: IBM DevOps on AWS and DevOps and Software Engineering

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSE) L T P C

 $\frac{1}{3}$ 1 0 4

Course Objectives:

- Demonstrate data analytics
- Understand the relation between big data and AI
- Discuss various applications of AI

Course Outcomes:

After completion of the course, students will be able to

- Apply AI in various fields
- Know the prospects in the Data Science field
- Summarize past, present and future of Artificial Intelligence
- Develop AI Applications involving huge data

UNIT I The story of big data, Artificial intelligence, Machine learning and Big data, why is Big Data useful? Use cases for data analytics,

UNIT II

Understanding the big data ecosystem, How Big data can help guide your strategy, forming your strategy for Big Data and Data Science.

UNIT III

Implementing Data Science Analytics, Algorithms and Machine Learning, choosing your technologies, Building your team.

UNIT - IV

AI Business Models, AI and Speech Recognition: Conversation Interfaces, The Challenges towards Master bots, how is the market distributed? Final food for thoughts.

AI and Insurance: A bit of background, so how can AI help the Insurance Industry? Who are the sector innovators? Concluding thoughts.

AI and Financial Services: Financial Innovations, Innovation transfer, Financial Disruptor, Segmentation of AI in Fintech.

AI and Blockchain: Non-technical introduction to Block chain, A Digression on initial coin offerings, How AI can change Block chain, How Block chain can change AI, Decentralized Intelligent Companies.

UNIT V

Lecture 10Hrs

New Roles in AI: Hiring new figures to lead the data revolution, The chief data officer, The chief artificial intelligent officer, The chief robotics officer.

AI and Ethics: How to design machines with ethically significant behaviors, data and biases, accountability and trust, AI usage and the control problem, AI safety and catastrophic risks.

AI and Intellectual property: Why startup patent inventions, the advantages of patenting your product, reasons behind not looking for patent production, the patent landscape.

AI and Venture Capital: The Rationale, Personal and team characteristics, financial considerations, business features, industry knowledge, an outsider study: Hobos and Highfliers.

Textbooks:

- 1. DavidStephenson, Big data demystified, Pearson
- 2. Francesco Corea, An Introduction to data, everything you need to know about AI, Big Data, Data Science, Springer, 2019

Lecture 9Hrs

Lecture 10Hrs

Lecture 9Hrs

Lecture 8Hrs

Reference Books:

1. Johnson, Benny G., Fred Phillips, and Linda G. Chase. "An intelligent tutoring system for the accounting cycle: Enhancing textbook homework with artificial intelligence." Journal of Accounting Education 27.1 (2009): 30-39.

- 1. AI Foundations for Everyone | Coursera
- 2. IBM Data Science Professional Certificate | Coursera

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSE) L T P C

L I P C 3 1 0 4

(20A30M01) VIRTUAL REALITY

Course Objectives:

This course is designed to give historical and modern overviews and perspectives on virtual reality. It describes the fundamentals of sensation, perception, technical and engineering aspects of virtual reality systems.

Course Outcomes:

After completion of the course, students will be able to

- Describe how VR systems work and list the applications of VR.
- Understand the design and implementation of the hardware that enables VR systems to be built.
- Understand the system of human vision and its implication on perception and rendering.
- Explain the concepts of motion and tracking in VR systems.
- Describe the importance of interaction and audio in VR systems.

UNIT I Introduction to Virtual Reality

Lecture 8 Hrs

Defining Virtual Reality, History of VR, Human Physiology and Perception, Key Elements of Virtual Reality Experience, Virtual Reality System, Interface to the Virtual World-Input & output- Visual, Aural & Haptic Displays, Applications of Virtual Reality Case Study: Study the use of Virtual Reality at NASA

UNIT II Representing the Virtual World, The Geometry of Virtual Lecture 8 Hrs Worlds & The Physiology of Human Vision

Representation of the Virtual World, Visual Representation in VR, Aural Representation in VR and Haptic Representation in VR

Geometric Models, Changing Position and Orientation, Axis-Angle Representations of Rotation, Viewing Transformations, Chaining the Transformations, Human Eye, eye movements & implications for VR

UNIT III Visual Perception & Rendering

Lecture 10 Hrs

Visual Perception - Perception of Depth, Perception of Motion, Perception of Color, Combining Sources of Information Visual Rendering -Ray Tracing and Shading Models, Rasterization, Correcting Optical Distortions, Improving Latency and Frame Rates UNIT IV Motion & Tracking Lecture 10 Hrs

Motion in Real and Virtual Worlds- Velocities and Accelerations, The Vestibular System, Physics in the Virtual World, Mismatched Motion and Vection Tracking- Tracking 2D & 3D Orientation, Tracking Position and Orientation, Tracking Attached Bodies

UNIT V Interaction & Audio

Lecture 9 Hrs

Interaction - Motor Programs and Remapping, Locomotion, Manipulation, Social Interaction. Audio -The Physics of Sound, The Physiology of Human Hearing, Auditory Perception, Auditory Rendering

Textbooks:

1. Virtual Reality, Steven M. LaValle, Cambridge University Press, 2016

2. Understanding Virtual Reality: Interface, Application and Design, William R Sherman and Alan B Craig, (The Morgan Kaufmann Series in Computer Graphics)". Morgan Kaufmann Publishers, San Francisco, CA, 2002

3. Developing Virtual Reality Applications: Foundations of Effective Design, Alan B Craig, William R Sherman and Jeffrey D Will, Morgan Kaufmann, 2009.

Reference Books:

 Gerard Jounghyun Kim, "Designing Virtual Systems: The Structured Approach",2005.
 Doug A Bowman, Ernest Kuijff, Joseph J LaViola, Jr and Ivan Poupyrev, "3D User Interfaces, Theory and Practice", Addison Wesley, USA, 2005.

3. Oliver Bimber and Ramesh Raskar, "Spatial Augmented Reality: Merging Real and Virtual Worlds", 2005.

4. Burdea, Grigore C and Philippe Coiffet, "Virtual Reality Technology", Wiley Interscience, India, 2003.

- 1. Coursera: Virtual Reality Specialization
- 2. NPTEL course: Prof. Steven LaValle, Virtual Reality, IIT Madras,

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR **B.Tech (CSE)** LTPC

3 0 0 3

(20A30M02T) FREE & OPEN SOURCE SOFTWARE FOR VR-AR

Course Objectives:

• The objective of this course is to explain how Unity and other open source software supports the many components of a VR app, including tracking, teleporting, interacting with virtual objects and at the same time to see how Unity's AR Foundation supports building AR apps

Course Outcomes:

- Compare and Contrast VR and AR experiences
- Demonstrate and develop VR apps in Unity
- Demonstrate and develop AR apps in Unity
- Acquire knowledge in VR and AR technologies in terms of used devices, building of the virtual environment and modalities of interaction and modelling.
- Acquire knowledge about the application of VR and AR technologies in medicine, education, cultural heritage and games
- Understand Web based VR

Introduction to AR & VR

Lecture Hrs 8

UNIT I Introduction to VR and WebVR: Introducing Virtual Reality, Types of VR Hardware Setup, Web Based Virtual Reality, Opportunities for WebVR Applications, Current State of WebVR, Virtual Reality Devices Available in the Market.

Bringing VR to the Web and WebVRFrameworks: The WebVR API, What Is MozVR? Is Your Browser WebVR Enabled? WebVR Developer Tools.

Setting Up Your VR Lab and Popular WebVRProjects: Google: Google Cardboard, Oculus Rift, HTCVive, Other Requirements, A-Painter, Blair Witch WebVR Experience.

Introduction to A-Frame: Introducing the A-Frame Library, The Entity-Component System, Primitives, A-Frame Inspector.

VR App Development with Unity Lecture Hrs 8 **UNIT II** From "Hello, World" to a VR Content Display: Building a Simple "Hello, World" VR Application, Building a VR Content Display Web Site.

Building a VR-Based Movie Theatre: Planning the Movie Theatre, building 3D Models with Magic Voxel, Getting Prebuilt Models from Clara.

A-Frame Components and the Registry: Components in A-Frame, Lifecycle Methods of Components Built-in Components, Using A-Frame Registry Components.

Version Control and Deploying Your Code on GitHub: Introduction to Version Control Systems, Advantages of Version Control, Git: All You Need to Know, working with GitHub, Hosting Your VR Web Site for Free Using GitHub Pages.

UNIT III AR App Development with Unity Lecture Hrs 10 Getting to know Unity: Why is Unity so great? Unity, How to use Unity, Getting up and running with Unity programming

Building a demo that puts you in 3D space: Before you start, Begin the project, making things move, Script component for looking around, Keyboard input component.

Adding enemies and projectiles to the 3D game: Shooting via raycasts, Scripting reactive targets, Basic wandering AI, spawning enemy prefabs, Shooting the projectile and colliding with a target 3.5.3. Damaging the player

Developing graphics for your game: Understanding art assets, understanding art assets, building basic 3D scenery: white boxing, Texture the scene with 2D images, generating sky visuals using texture images, working with custom 3D models, creating effects using particle.

UNIT IV Programming for AR & VR applications Lecture Hrs 10

Building a Memory game using Unity's new 2D functionality: Setting everything up for 2D graphics, Building the object out of sprites, Displaying the various card images, Making and scoring matches, Restart Button.

Putting a 2D GUI in a 3D game: Before you start writing code, Setting up the GUI display, Programming an invisible UIController, Updating the game by responding to events

Creating a third-person 3D game: player movement and animation: Adjusting the camera view for third-person, Programming camera-relative movement controls, Implementing the jump action, Setting up animations on the player character

Defining animation clips in the imported model: Creating the animator controller for these animations, adding interactive devices and items within the game, creating doors and other devices, interacting with objects by bumping into them, Managing inventory data and game state. Inventory UI for using and equipping items, 8.4.1. Displaying inventory items in the UI 8.4.2. Equipping a key to use on locked doors, Strong finish

UNIT V Game Interaction and Deployment Lecture Hrs 8 Connecting your game to the internet: Creating an outdoor scene, Downloading weather data from an internet service. Adding a networked, Posting data to a web server

Playing audio: sound effects and music:Importing sound effects, Playing sound effects, Audio control interface, Background music

Putting the parts together into a complete game: Building an action RPG by repurposing projects, Developing the overarching game structure, Handling the player's progression through the game Deploying your game to players' devices:Start by building for the desktop: Windows, Mac, and Linux, Building the application, Building for mobile apps: iOS and Android

Textbooks:

1.SrushtikaNeelakantam, Tanay Pant - Learning Web-based Virtual RealityBuild and Deploy Webbased Virtual Reality Technology, APress, 2017.

2. Joseph Hocking - Unity in Action, Manning Publisher, 2015.

Reference Books:

1.Jesse Glover, Jonathan Linowes - Complete Virtual Reality and Augmented Reality Development with Unity: Leverage the power of Unity and become a pro at creating mixed reality applications. Packt publishing, April 2019.

2. Jonathan Linowes, Krystian Babilinski - Augmented Reality for Developers: Build practical augmented reality applications with Unity, ARCore, ARKit, and Vuforia. Packt publishing, October 2017.

- 1. https://www.udemy.com/course/learn-a-frame-and-get-ready-for-webvr/
- 2. https://www.udemy.com/course/intro-webxr/

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSE) L T P C

0 0 2 1

(20A30M02P) FREE & OPEN SOURCE SOFTWARE FOR VR-AR LAB

Course Objectives:

The objective of this course is to use Unity and other open source software to develop VR games, Virtual Environments and develop Applications for medical purpose.

Course Outcomes:

After completion of the course, students will be able to

- Design VR games
- Develop VR games
- Create Virtual Experiments

List of Experiments

A-Frame Experiments

- 1. Use A-Frame primitives to create different objects.
- 2. Attach physics components to A-Frame primitives.
- 3. Register your own primitives using A-Frame.
- 4. Create your own A-Frame Component.
- 5. Create your own scene and control the components in the scene using Java Script code.
- 6. Add the functionality grab, throw, rub, flip, pole, stretch, press, etc in VR using A-frame.
- 7. Use Don McCurdy's animation-mixer component to add animations.
- 8. Host and Publish A-Frame site.

Unity Experiments

- 1. Create different possible 3D objects. View them in game view. Move them, rotate them and view them again. Try to perform all the possible operations.
- 2. Create a Rolling ball and control it using arrow keys of the keyboard.
- 3. Create a missile. Move it in the air. Let it go and hit specific target. When it hits a blast should result and everything should vanish expect same ash.
- 4. Create an animated cat. You can download assets if necessary. Let the cat walk, move, jump, etc.
- 5. Create a tiger. You can download assets if necessary. When you move near to it is should attack. If it is successful you are going to die. Otherwise you can play with it.
- 6. Create a Terrain of your choice. Create a car and move it on the terrain. You can download assets if necessary.
- 7. Integrate Google cardboard with unity. With any simple program (you may use above experiments) build the application, load it into mobile and view it in Google cardboard.
- 8. Virtual reality can be used to treat different phobias. Do mini project to treat the phobias
- a. Fear of Public speaking b. Fear of Heights c. Fear of Lift d. Claustrophobia

Equipment: Computer systems with minimum of 16 GB RAM and a separate (not inbuilt) Graphics card.

For all the above you may make use of different HMDs available including Google Cardboard. **References:**

- 1. Official Website aframe.io
- 2. <u>https://riptutorial.com/Download/aframe.pdf</u> a free e-book created by stack overflow contributors.

Online Learning Resources/Virtual Labs:

- 1. https://www.udemy.com/course/learn-a-frame-and-get-ready-for-webvr/
- 2. https://www.udemy.com/course/intro-webxr/

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR **B.Tech (CSE)** LTPC

3 0 0 3

(20A30M03T) GAME DEVELOPMENT

Course Objectives:

- To learn the fundamentals of Game Development
- To choose the team

Course Outcomes:

After completion of the course, students will be able to

- Understand the need for Game development.
- Integrate various concepts and techniques of 3D Game design.
- Commercialize games
- Building career in game industry
- UNIT I

Art of Game Design Lecture 12 Hrs In the Beginning There is the game designer, the Designer creates an experience, The experience rises out of a game,

UNIT II	Art of Game Design continued	Lecture 6 Hrs
The game is ma	de for a player, The experience is in the Players mind,	

UNIT III Characteristics of games Lecture 9 Hrs Length of Play time, Number of Players, Heuristics, Player Elimination, Interactivity, Politics, King making, Teamwork

UNIT IV Working Context Lecture 8 Hrs Introduction, Contemporary Serious games, Games with an Agenda, Realistic Games, Core Contemporary Games, Repurposed Commercial of the shelf games, Modified games, The Value proposition

UNIT V

Serious Business and Game design Lecture Hrs Introduction, Entertainment Games Industry, Serious game market, Stakeholders, Customer base, Human resources

Serious game design document, Requirements specification, Technical Architecture, Game Design

Textbooks:

- 1) Jesse Schell, "The Art of Game Design", Morgan Kaufmann
- 2) George Skaff Elias, Richard Garfield, and K. Robert Gutschera, "Characteristics of Games", The MIT Press.
- 3) Bryan Bergeron, "Developing Serious Games", Charles River Media

Reference Books:

- 1) Jeremy Gibson, "Introduction to Game Design, Prototyping, and Development: From Concept to Playable Game with Unity and C#", Addison-Wesley Professional, 2^{nd} edition, 2016.
- 2) 2 John Horton, "Learning Java by Building Android Games", Packt Publishing Limited, 1st edition, 2015. 3 Jorge Palacios, "Unity 5.x Game AI Programming Cookbook", Packt Publishing Limited, 1st edition, 2016

- 1. https://www.coursera.org/specializations/game-design-and-development
- 2. https://www.edx.org/course/cs50s-introduction-to-game-development

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR **B.Tech (CSE)** LTPC

0 0 2 1

(20A30M03P) GAME DEVELOPMENT LAB **Fundamental Programming**

Pre-requisite

Course Objectives:

- Learn the process of game design ٠
- Learn the process of game development
- Understand art role in game development

Course Outcomes:

After completion of the course, students will be able to

- Design new games •
- Create animations •
- Collaborate in a team •
- Improve curiosity

List of Experiments (can be implemented using any tools: Play Canvas, jMonkey Engine, Direct 3D 11, Scratch, Python or Unity.)

Unity Experiments

- 1. Draw a continuously expanding spiral.
- 2. Draw expanding concentric circles.
- 3. Construct a house of your choice in Unity
- 4. Create different pet animals. Add your own animations to them. Use can use asset store. Create a simple story using the pet animals and their animations.
- 5. Create a rain animation. Add sound.
- 6. Create a big park using terrains, trees, and other assets. Permit the user to go round it.
- 7. Crate a target. Create a gun. Permit the user to fire the gun. Count number of hits and misses.
- 8. Create a car game. The game consists of your car and also other cars. Your car is controlled with arrow keys. There is deadline based on time. If your car gets involved in more than three collisions or deadline is reached game will restart. There will be a destination which the car has to reach to become victorious. Display time elapsed at the end of the game.
- 9. Create a flight. Make the flight fly in plain area, over the buildings, over the hills, over the sea, etc. Add different types of controls to your game to control the flight.
- 10. Create a cartoon character of a person. Add different animations of your choice.
- 11. Create a big hall. Create different objects in the hall. Use teleporting to move to those objects using Gaze based interaction.
- 12. Design any multi user game of your choice. Equipment: Computer systems with minimum of 16 GB RAM and a separate (not inbuilt) Graphics card.

For all the above you may make use of different HMDs available including Google Cardboard.

References:

- 1. Jesse Schell, "The Art of Game Design: A book of Lenses", CRC Press, 2019
- 2. Nicolas Alejandro Borromeo, "Hands-on Unity 2020 Game Development: Build, Customize and Optimize professional games using Unity 2020 and C#", Packt Publisher, 2020

Online Learning Resources/Virtual Labs:

- 1. https://www.coursera.org/specializations/game-design-and-development
- 2. https://www.edx.org/course/cs50s-introduction-to-game-development

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR LTPC **B.Tech (CSE)**

3 1 0 4

(20A30M04) VR-AR FOR HEALTH CARE

Course Objectives:

- Understand the significance of VR-AR in Health care
- Demonstrate application of VR-Ar in Healthcare

Course Outcomes:

- Apply VR-AR to treat Phobias
- Apply VR-AR to treat Depression
- Use VR-AR to treat various medical issues

UNIT I

VR in Psychological Applications:

Being There: Understanding the Feeling of Presence in a Synthetic Environment and Its Potential for Clinical Change,

Virtual Realities in the Treatment of Mental Disorders: A Review of the Current State of Research Games for Health: Have Fun with Virtual Reality!

UNIT II Lecture 8 Hrs Description of a Treatment Manual for in virtuo Exposure with Specific PhobiaVirtual Reality and Body Dissatisfaction Across the Eating Disorder's SpectrumA Discussion of the Use of Virtual Reality in Dementia

UNIT III

VR in Medical Applications:

Virtual Reality – A New Era in Surgical Training Virtual Reality Simulation: A Valuable Adjunct to Surgical Training

Virtual Rehabilitation and Training for Postural Balance and Neuromuscular Control

UNIT IV

Applications of Virtual Reality Technology in Brain Imaging Studies Cybertherapy in Medicine – Experience at the Universidad Panamericana, IMSS and ISSSTE Mexico

UNIT V

VR in Pedagogical Applications:

Using Augmented Reality Artifacts in Education and Cognitive Rehabilitation Virtual Environments for Children and Teens

Textbooks:

1) Christiane Eichenberg, "VIRTUAL REALITY IN PSYCHOLOGICAL, MEDICAL AND PEDAGOGICAL APPLICATIONS", Addison- JanezaTrdine, 2012,

Reference Books:

- 1. Kerry Dinmont, Virtual Reality in Health care, Brightpoint publisher, 2021
- 2. Samiya Khan, MansafAlam, "Extended Reality for Healthcare Systems:Recent Advances in Contemporary Research, Academic Press, 2022

Online Learning Resources:

1. https://www.udemy.com/course/virtual-reality-and-mental-healthcare/

Lecture 10 Hrs

Lecture 10Hrs

Lecture 9 Hrs

Lecture 8 Hrs

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR LTPC **B.Tech (CSE)** 3 1 0 4

(20A12M01) APPLIED CRYPTOGRAPHY

Course Objectives:

- To understand the basic network security concepts. •
- To acquire knowledge of several cryptographic algorithms.
- To illustrate various data integrity algorithms and to design a trusted system. •

Course Outcomes (CO):

After completion of this course, the students will be able to

- Recall the basic network security concepts. •
- Apply several Cryptographic Algorithms. •
- Illustrate data integrity algorithms. •
- Apply Email and IP security. •
- Design a trusted system. •

Introduction UNIT - I

Security Trends- The OSI Security Architecture, Security Attacks, Security Services and Security Mechanisms, A model for Network Security- Classical Encryption Techniques.

UNIT - II **Cryptographic Algorithms**

Number Theory- Modern Block Ciphers: DES, 3DES, AES, Blowfish, CAST-128 - Stream Cipher -Public Key Cryptography: RSA, Diffie-Hellman, Elgamal, ECC.

UNIT - III **Data Integrity Algorithms** Lecture Hrs: 8 MD5 message digest algorithm - Secure hash algorithm (SHA) Digital Signatures: Digital Signatures - authentication protocols - digital signature standards (DSS) - proof of digital signature algorithm -Authentication Applications: Kerberos and X.509 - directory authentication service - electronic mail security-pretty good privacy (PGP) - S/MIME.

UNIT - IV **Email and IP Security** Pretty Good Privacy (PGP) and S/MIME. IP SECURITY: Overview, IP Security Architecture, Authentication Header, Encapsulating Security Payload, Combining Security Associations and Key Management. UNIT - V Lecture Hrs: 8

Web and System Security Web Security: Secure socket layer and transport layer security - secure electronic transaction -System Security: Intruders - Viruses and related threads - firewall design principals - trusted systems.

Textbooks:

- 1. William Stallings, "Cryptography and Network security Principles and Practices", Pearson/PHI, 2017.
- 2. William Stallings, Network Security Essentials (Applications and Standards), Pearson Education, India, 2017.

Reference Books:

- 1. W. Mao, "Modern Cryptography Theory and Practice", Pearson Education, 2011.
- 2. Charles P. Pfleeger, Shari Lawrence Pfleeger Security in computing, Prentice Hall of India, 2015.
- 3. Atul Kahate, Cryptography and Network Security, Tata McGraw hill, India, 2019.

Online Learning Resources:

- 1. https://www.udacity.com/course/applied-cryptography--cs387
- 2. https://www.coursera.org/specializations/introduction-applied-cryptography

Lecture Hrs: 8

Lecture Hrs: 10

Lecture Hrs: 9

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR **B.Tech (CSE)** LTPC

3 1 0 4

(20A12M02) INTRODUCTION TO CRYPTO CURRENCY

Course Objectives:

- 1. To understand the fundamentals of network and symmetric ciphers.
- 2. To apply asymmetric ciphers and data integrity algorithms.
- 3. To explore the basics of cryptocurrencies and use Ethereum programming.

Course Outcomes (CO):

After completion of this course, the students will be able to

- 1. Recall the network security fundamentals.
- 2. Employ various symmetric ciphers.
- 3. Apply asymmetric ciphers and data integrity algorithms.
- 4. Explore the basics of cryptocurrencies.
- 5. Use Ethereum programming

Introduction to Cyber Security UNIT - I Lecture Hrs: 8 Introduction to Cyber Security, Need for security, Concept of Cyber Space, Cyber Crimes and Cyber- attack. Fundamental security principles - threats, attacks and vulnerability. Key Security triad - Confidentiality, Integrity and Availability. Key components of cybersecurity network architecture. Introduction to basic Security Management and Policies - Authentication, Authorization, Access control, Identification and Accounting.

UNIT - II Lecture Hrs: 10 **Symmetric Ciphers** Cryptography - Private key Cryptography - Classical Encryption Techniques - Substitution Techniques - Transposition Techniques - Rotor Machines - Steganography - Data Encryption Standard - Advanced Encryption Standard - Multiple Encryption and Triple DES.

UNIT - III Asymmetric Ciphers and Data Integrity Algorithms Lecture Hrs: 8 Public-Key Cryptography - RSA algorithm - Diffie-Hellman Key Exchange - Elgamal Cryptographic System - Elliptic Curve Arithmetic - Elliptic Curve Cryptography.

MD5 message digest algorithm - Secure hash algorithm (SHA) Digital Signatures: Digital Signatures - authentication protocols - digital signature standards (DSS) - proof of digital signature algorithm.

UNIT - IV Cryptocurrencies Lecture Hrs: 9

History, A basic crypto currency, Creation of coins, Payments and double spending, Bitcoin – Digital Signatures as Identities - eWallets - Personal Crypto security - Bitcoin Mining - Mining Hardware -Energy Consumption – Mining Pools – Mining Incentives and Strategies.

UNIT - V Ethereum

Lecture Hrs: 8 The Ethereum Network - Components of Ethereum Ecosystem - Ethereum Programming Languages: Runtime Byte Code, Blocks and Blockchain, Fee Schedule - Supporting Protocols -Solidity Language.

Textbooks:

- 1. William Stallings, "Cryptography and Network security Principles and Practices", Pearson/PHI.2017.
- 2. Aravind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller and Steven Goldfeder, "Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction", Princeton University Press, July, 2016.

Reference Books:

- 1. William Stallings, Network Security Essentials (Applications and Standards), Pearson Education, India, 2017.
- 2. Imran Bashir, "Mastering Blockchain: Distributed Ledger Technology, Decentralization and Smart Contracts Explained", Second Edition, Packet Publishing, 2018.

- 1. https://www.coursera.org/learn/cryptocurrency
- 2. https://www.simplilearn.com/cryptocurrency-for-beginners-free-course-skillup

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSE) L T P C

$\begin{array}{c} 2 & 1 & 1 & 0 \\ 3 & 1 & 0 & 4 \end{array}$

(20A12M03) FOUNDATIONS OF BLOCKCHAIN TECHNOLOGY

Course Objectives:

- To understand the history, types and applications of Blockchain
- To acquire knowledge about cryptography and consensus algorithms.
- Deploy projects using Web3j and design blockchain based applications.

Course Outcomes (CO):

After completion of this course, the students will be able to

- Contentedly discuss and describe the history, types and applications of Blockchain
- Gains familiarity with cryptography and Consensus algorithms.
- Create and deploy projects using Web3j.
- Implement an ICO on Ethereum.
- Design blockchain based application with Swarm and IPFS.

UNIT - I Introductionto Blockchain Lecture Hrs: 8 Distributed DBMS – Limitations of Distributed DBMS, Introduction to Block chain – History, Definition, Distributed Ledger, Blockchain Categories – Public, Private, Consortium, Blockchain Network and Nodes, Peer-to-Peer Network, Mining Mechanism, Generic elements of Blockchain, Features of Blockchain, and Types of Blockchain.

UNIT - II **Blockchain Architecture** Lecture Hrs: 10 Operation of Bitcoin Blockchain, Blockchain Architecture – Block, Hash, Distributer P2P, Structure of Blockchain- Consensus mechanism: Proof of Work (PoW), Proof of Stake (PoS), Byzantine Fault Tolerance (BFT), Proof of Authority (PoA) and Proof of Elapsed Time (PoET).

UNIT - IIIBlockchain- Based Future SystemLecture Hrs: 8Project presentation-Futures smart contract: Blockchain oracles- Web3j: Setting up the Web3J-Installing web3j-Wallet creation, Java client: The wrapper generator-Initializing web3j-Setting upEthereum accounts-Deploying the contract.

UNIT - IV **Blockchain in Business and Creating ICO** Lecture Hrs: 9 Public versus private and permissioned versus permission less blockchains- Privacy and anonymity in Ethereum- Why are privacy and anonymity important? - The Ethereum Enterprise Alliance-Blockchain as-a-Service- Initial Coin Offering (ICO): Project setup for ICO implementation- Token contracts- Token sale contracts-Contract security and testing the code.

UNIT - V **Distributed Storage IPFS and SWARM** Lecture Hrs: 8 Ethereum Virtual Machine- Swarm and IPFS: Installing IPFS, hosting our frontend: Serving your frontend using IFPS, serving your frontend using Swarm, IPFS file uploader project: Project setup the web page

Textbooks:

- 1. Imran Bashir, "Mastering Blockchain: Distributed Ledger Technology, decentralization, and smart contracts explained", 2nd Edition, Packet Publishing Ltd, March 2018.
- 2. BellajBadr, Richard Horrocks, Xun (Brian) Wu, "Blockchain by Example: A developer's guide to creating decentralized applications using Bitcoin, Ethereum, and Hyperledger", Packet Publishing Limited, 2018.

Reference Books:

- 1. Andreas M. Antonopoulos, "Mastering Bitcoin: Unlocking Digital Cryptocurrencies", O'Reilly Media Inc, 2015.
- 2. Aravind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller and Steven Goldfeder, "Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction", Princeton University Press, 2016.

- 1. <u>https://www.coursera.org/courses?query=blockchain</u>
- 2. https://www.springboard.com/resources/learning-paths/blockchain-foundations/

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSE) L T P C 3 1 0 4

(20A12M04) BLOCHCHAIN USE CASES

Course Objectives:

- To deploy Private Blockchain and smart contracts on Ethereum.
- To understand the importance of consensus
- To implement Blockchain for various use cases

Course Outcomes (CO):

After completion of this course, the students will be able to

- 1. Recall the structure and mechanism of Bitcoin, Ethereum, Hyperledger and Multi chain Blockchain platforms
- 2. Infer the importance of consensus in transactions and how transactions are stored on Blockchain.
- 3. Setup your own private Blockchain and deploy smart contracts on Ethereum.
- 4. Deploy the business network using Hyperledger Composer.
- 5. Implement Blockchain for various use cases

UNIT - I Use Cases

Blockchain in Supply Chain - Blockchain in Manufacturing - Blockchain in Automobiles -Blockchain in Healthcare - Blockchain in Cyber security - Blockchain in Financial Industry.

UNIT - II Use Case Model – Privacy Blockchain Lecture Hrs: 10 Use case 1: Blockchain in Financial Software and Systems (FSS): (i) Settlements, (ii) KYC, (iii) Capital markets, (iv) Insurance

Use case 2: Blockchain in trade/supply chain: (i) Provenance of goods, visibility, trade/supply chain finance, invoice management discounting, etc.

UNIT - IIIUse Case Model – Blockchain Digital IdentityLecture Hrs: 8Use case 3: Blockchain for Government: (i) Digital identity, land records and other kinds of record
keeping between government entities, (ii) public distribution system social welfare systems
Blockchain Cryptography, Privacy and Security on Blockchain

UNIT - IVBlockchain Use Cases in IOT SectorLecture Hrs: 9AutonomousDecentralized peer to peer telemetry- Blockchain Enabled Security for Smart citiesBlockchain EnabledSmart Home Architecture- Blockchain based self- managed VANETs- Securityand privacy of data.

UNIT - V **Developing and Future of AI with Blockchains** Lecture Hrs: 8 Applying SDLC practices in Blockchain: Introduction to DIApp - Architecture of a DIApp -Developing a DIApp - Testing a DIApp - Deploying DIApp - Monitoring a DIApp, Implementing DIApp - Evolution of decentralized applications, building a sample DIApp, Developing Smart Contracts, Solution approach with AI, Developing: Client code, Backend, Frontend, Future of converging AI & Blockchain in enterprises & Government.

Textbooks:

- 1. Andreas M. Antonopoulos, "Mastering Bitcoin: Unlocking Digital Cryptocurrencies", O'Reilly Media Inc, 2015.
- 2. Melanie Swan "Blockchain", First Edition, O'Reilly Jan 2015.

Reference Books:

- 1. Hyperledger Fabric https://www.hyperledger.org/projects/fabric.
- 2. Zero to Blockchain An IBM Redbooks course, by Bob Dill, David Smits https://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/crse0401.html.

Online Learning Resources:

- 1. https://www.udemy.com/course/the-complete-guide-to-blockchain-use-cases/
- 2. https://www.coursera.org/learn/blockchain-foundations-and-use-cases

Lecture Hrs: 8

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (FT) L T P C 3 1 0 4

(20A27M01)PRINCIPLES OF FOOD ENGINEERING

Course Objectives:

- To familiarize the importance and usage of units.
- To interpret the fundamental laws and principles and its application

Course Outcomes (CO):

- Students will learn the importance of units.
- Students will understand the basic laws and principles and its application in food engineering

UNIT I

Introduction to Food Engineering: Definition of terms, System of measurements, The S.I System, Conversion of Units. Steam Generation & Utilization: Concept of normal boiling point, Properties of Steam, Forms of Steam. Pressure-Enthalpy diagram, Problems; Boilers: Classification, Types, Criteria for selection, Maintenance & Applications

UNIT II

Basic principles of Physics & Chemistry: Ideal Gas law, Vander Waal's equation, Avagadro's law, Dalton's law, Problems; Kinetic Theory of gases. Thermodynamics: Basic concepts, First law of thermodynamics, Second law of thermodynamics, Zero law of thermodynamics Refrigeration: Basic concepts, Joule-Thomson effect, Refrigerants, Problems, Refrigeration types (VCC, VAC), Applications

UNIT III

Humidity: Humidity & Relative Humidity, Saturation Humidity, Percentage Humidity, Psychometric chart – Utilization, problems; Humidifiers & Dehumidifiers; Applications.

Material balance and Energy balance in various unit operations – Problems, significance in food processing.

UNIT IV

Dimensional Analysis, Fundamental -derived units. Conversion of Dimensional equations – Uses, Methods (Rayleigh's & Buckingham's) Examples: Nusselts Number, Reynolds number, Prandtl's number, Froude's number. Engineering properties of Food Materials: Mass- volume- area related properties of foods, rheological properties of solid foods, thermal properties of frozen & unfrozen foods, electrical conductivity of foods, dielectric properties of foods.

UNIT V

Measurement & Control of Process Parameters: Various Process Parameters, On-line & Off-line parameters, Critical & non-critical parameters, Measurement of various parameters, controlling methods (Manual, Automatic & Computer control)

Textbooks:

- 1. R. Paul Singh and Dennis R. Heldman, "Introduction to Food Engineering". Academic Press, 4th Edition, 2009.
- 2. P.G. Smith, "Introduction to Food Process Engineering". Springer, 2nd Edition, 2011.

References:

- 1. J.M. Smith, H.C. Van Ness and M.M. Abbott "Introduction to Chemical Engineering Thermodynamics", 7th Edition, McGraw-Hill, Inc., NY, USA. 2005.
- 2. Z. Berk, "Food Process Engineering and Technology, Food Science and Technology", 1st Edition, International Series, Elsevier, 2009.
- 3. D. G. Rao, "Fundamentals of food engineering", Prentice-Hall of India, New Delhi, 2010.
- 4. R.K. Rajput. "Engineering Thermodynamics", 3rd Edition, Laxmi Publications (P) Ltd., Bangalore, 2007

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (FT) LTPC 3 1 0 4

(20A27M02)FOOD PLANT UTILITIES & SERVICES

Course Objectives:

To give brief idea about the utilities that are required/used in food industry and their sources and importance.

Course Outcomes:

By end of the course, students will understand the following

Various utilities and services used in food industry and its applications in food industrynamely water, steam, electricity and etc.

UNIT I

Introduction Classification of various utilities and services in food industry. Water use in Food Processing Industry Water supply system: Pumps of different types, operational aspects, piping system for fresh water, chilled water etc., fittings and control, water requirement for cleaning and processing, water quality, water purification and softening Unit

UNIT II

Water use in food processing: Different types of water requirements in food processing plants, types of water use, waste water sources, water wastage minimization, water loadings per unit mass of raw material.

Water conservation: Water and waste water management, economic use of water, water filtration and recirculation.

UNIT III

Steam uses in Food Industry Steam uses in food industry: Food processing operations in which steam is used, temperature, pressure and quantity of steam required in various food processing operations Steam generation system: Components of a boiler system, fuels used in boilers, energy analysis for a steam generation system, heat loss from boiler system, boiler design consideration.

UNIT IV

Heat Recovery in Food Processing Facilities: Quantity and quality of waste heat in food processing facilities, waste heat utilization, heat exchangers for waste heat recovery, and heat pumps for waste heat recovery. Waste Disposal and its Utilization Industrial waste, sewage, influent, effluent, sludge, dissolved oxygen, biological oxygen demand, chemical oxygen demand.

UNIT V

Planning and Design of Service Facilities in Food Industry Estimation of utilities requirements: Lighting, ventilation, drainage, CIP system, dust removal, fire protection etc. Maintenance of facilities: Design and installation of piping system, codes for building, electricity, boiler room, plumbing and pipe coloring, maintenance of the service facilities. Services required in offices, laboratories, locker and toilet facilities, canteen, parking lots and roads, loading docks, garage, repair and maintenance shop, ware houses etc.

Textbooks:

- 1. Lijun Wang. "Energy Efficiency and Management in Food Processing Facilities". CRC Press. 2008.
- 2. M. E. Casper. "Energy-saving Techniques for the Food Industry". Noyes Data Corporation. 1977,

References:

- P.L. Ballaney, "Thermal Engineering in SI Units", 23rd Edition, Khanna Publishers, Delhi, 2003.
 C.P. Arora. "Refrigeration and Air Conditioning". 3rd Edition, Tata McGraw Hill Publishing Co.
- Ltd. New Delhi. 2008,
- 3. W. E. Whitman, "A Survey of Water Use in the Food Industry", S. D. Holdsworth. Published by British Food Manufacturing Industries Research Association.
- 4. Chilton's Food Engineering. 1979, Chilton Co Publishers

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (FT) L T P C

3 1 0 4

(20A27M03) BUSINESS MANAGEMENT AND ECONOMICS

Course Objectives:

- To familiarize the students about management principles, various economic aspects of chemical processes
- Learn basics of Cost estimation, Working Capital and Capital Investment and understand the time value of money
- Learn the importance of Cash flow diagrams and Break-even analysis.
- Study depreciation methods and methods of estimation of profitability of an industry
- Study the procedures adopted for sources of recruitment, process of selection; Corporate social responsibility: Importance, business ethics.

Course Outcomes:

At the end of the course, the student will be able to:

- Explain the design considerations, cash flow and various costs involved in process Industries
- Calculate different types of interest & Predict the Present worth and annuities
- Explain types of taxes and Solve problems on depreciation using various methods
- Analyze different systems of accounting.
- Familiarize sources of recruitment, process of selection; Corporate social responsibility: Importance, and business ethics

UNIT I

Definitions, management principles, scientific principles, administrative principles; Maslow's Hierarchy of needs theory; Functions of management: Planning, organizing, staffing, directing, controlling Organizational structures, principles of organization; Types of organization: Formal and informal, line, line and staff, matrix, hybrid

UNIT II

Introduction to economics: Definitions, nature, scope, difference between microeconomics and macroeconomics; Theory of demand and supply, elasticity of demand, price and income elasticity

Markets: Types of markets and their characteristics; National income: GDP, GNP, NNP, disposable personal income, per capita income, inflation

UNIT III

Theory of production: Production function, factors of production. Law of variable proportions and law of returns to scale; Cost: Short run and long run cost, fixed cost, variable cost, total cost, average cost, marginal cost, opportunity cost; Break even analysis

UNIT IV

Finance management: Definition, scope, objective; Different systems of accounting: Financial accounting, cost accounting, management accounting

UNIT V

Human resource management: Definitions, objectives of manpower planning, process, sources of recruitment, process of selection; Corporate social responsibility: Importance, business ethics.

Textbooks:

- 1. Reddy and Raghuram, Agriculture, Finance and Management, Oxford & IBH Pub Co, 1996
- 2. Kotler and Keller, Burton, Marketing Management, Pearson Education Australia, 2008
- 3. Duening and Ivacevinch, Management: Principles and Guidelines, Dreamtech Press, 2003

Referencebooks:

- 1. L.M. Prasad, Principles and Practices of Management, 9th Ed. S. Chand & Sons, New Delhi 2001
- 2. Koontz Harold, Principles of Management, Tata McGraw-Hill Education Private Limited, New Delhi
- 3. K.K. Dewett and M.H. Navalur, Modern Economic Theory, S. Chand & Sons, New Delhi
- 4. S.P. Jain, Financial Accounting, Kalyani Publications, Ludhiana

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR LTPC B.Tech (FT)

3 1 0 4

(20A27M04)PLANT DESIGN AND ECONOMICS

Course Objectives:

- To familiarize the students about various economic aspects of chemical processes
- Learn basics of Cost estimation, Working Capital and Capital Investment and understand the time value of money
- Learn the importance of Cash flow diagrams and Break-even analysis.
- Study depreciation methods and methods of estimation of profitability of an industry
- Study the procedures adopted for Replacement and Selection from Alternatives. •

Course Outcomes:

At the end of the course, the student will be able to:

- Explain the design considerations, cash flow and various costs involved in process Industries •
- Calculate different types of interest & Predict the Present worth and annuities
- Explain types of taxes and Solve problems on depreciation using various methods
- Analyze alternative investments, pay out period for an investment and rate of return
- Solve linear programming problems (LPP) by graphical and algebraic methods •

UNIT I

Introduction, Process Design development. General design considerations, Cost and asset accounting. Cash flow for industrial operations, factors effecting investment and production cost, capital investments, estimation of capital investments, cost indices, cost factors in capital investment

UNIT II

Organizations for presenting capital investments, estimates by compartmentalization, estimation of total product of cost direction, production costs, fixed charges, plant overhead costs, financing.

Interest and investment cost, type interest, nominal and effective interest rates, continuous interest, present worth and discount annuities, cost due interest on investment, source of capital.

UNIT III

Taxes and insurances, type of taxes: federal income taxes, insurance-types of insurance, selfinsurance.

Depreciation: types of depreciation, services life, salvage value, present value, methods for determining depreciation, single unit and group depreciation.

UNIT IV

Profitability: alternative investments and replacements, profitability standards, discounted cash flow, capitalized cost, pay out period, alternative investments, analysis with small investments, increments and replacements.

UNIT V

Optimum design and design strategy, incremental cost, general procedure for determining optimum condition, comparison of graphical and analytical methods, optimum production rates, semi continuous cyclic operation, fluid dynamics, mass transfer strategy of linearization

Textbook:

1. Plant Design and Economics for Chemical Engineering, 4th ed., M.S. Peters and K.D. Timmermans, McGraw-Hill, 1991

Reference Books:

1. Process Engineering Economics, Schweyer, McGraw-Hill, 2002

Jawaharlal Nehru Technological University Anantapur (Established by Govt. of A.P., Act. No. 30 of 2008)

Ananthapuramu–515 002 (A.P.) India

Four Year B.Tech.

Course Structure and Syllabi under R20 Regulations

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR (Established by Govt. of A.P., ACT No.30 of 2008) ANANTAPUR – 515 002 (A.P) INDIA

Semester-0

Induction Program: 3 weeks

S.No	Course Name	Category	L-T-P-C
1	Physical Activities Sports, Yoga and Meditation, Plantation	MC	0-0-6-0
2	Career Counselling	MC	2-0-2-0
3	Orientation to all branches career options, tools, etc.	MC	3-0-0-0
4	Orientation on admitted Branch corresponding labs, tools and platforms	EC	2-0-3-0
5	Proficiency Modules & Productivity Tools	ES	2-1-2-0
6	Assessment on basic aptitude and mathematical skills	MC	2-0-3-0
7	Remedial Training in Foundation Courses	MC	2-1-2-0
8	Human Values & Professional Ethics	MC	3-0-0-0
9	Communication Skills focus on Listening, Speaking, Reading, Writing skills	BS	2-1-2-0
10	Concepts of Programming	ES	2-0-2-0

(Common for All Branches of Engineering)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR (Established by Govt. of A.P., ACT No.30 of 2008) ANANTAPUR – 515 002 (A.P) INDIA

CSE (Artificial Intelligence and Machine Learning) Course Structure (R20)

	Semester - 1 (Theory - 5, Lab - 4)					
S.No	Course No	Course Name	Category	L-T-P	Credits	
1.	20A54101	Linear Algebra and Calculus	BS	3-0-0	3	
2.	20A51101T	Chemistry	BS	3-0-0	3	
3.	20A05201T	C-Programming & Data Structures	ES	3-0-0	3	
4.	20A02101T	Basic Electrical & Electronics Engineering	ES	3-0-0	3	
5.	20A03202	Engineering Workshop	LC	0-0-3	1.5	
6.	20A05202	IT Workshop	LC	0-0-3	1.5	
7.	20A51101P	Chemistry Lab	BS	0-0-3	1.5	
8.	20A05201P	C-Programming & Data Structures Lab	ES	0-0-3	1.5	
9.	20A02101P	Basic Electrical & Electronics Engineering Lab	ES	0-0-2	1.5	
Total						

Semester -2 (Theory -5 , Lab -5)						
S.No	Course No	Course Name	Category	L-T-P/D	Credits	
1.	20A54202	Probability & Statistics	BS	3-0-0	3	
2.	20A56201T	Applied Physics	BS	3-0-0	3	
3.	20A52101T	Communicative English	HS	3-0-0	3	
4.	20A05101T	Python Programming & Data Science	ES	3-0-0	3	
5.	20A03101T	Engineering Drawing	ES	1-0-0/2	2	
6.	20A03101P	Engineering Graphics Lab	ES	0-0-2	1	
7.	20A52101P	Communicative English Lab	HS	0-0-3	1.5	
8.	20A56201P	Applied Physics Lab	BS	0-0-3	1.5	
9.	20A05101P	Python Programming & Data Science Lab	ES	0-0-3	1.5	
	·	•		Total	19.5	

	Semester-III						
S.No	Course Code	Course Name	Category	Hours	Hours per week		
				L	Τ	Р	-
1.	20A54304	Discrete Mathematics & Graph Theory	BS	3	0	0	3
2.	20A04304T	Digital Electronics& Microprocessors	ES	3	0	0	3
3.	20A05301T	Advanced Data Structures & Algorithms	PC	3	0	0	3
4.	20A05302T	Object Oriented Programming Through Java	PC	3	0	0	3
5.	20A05303	Computer Organization	PC	3	0	0	3
6.	20A04304P	Digital Electronics& Microprocessors Lab	ES	0	0	3	1.5
7.	20A05301P	Advanced Data Structures and Algorithms Lab	PC	0	0	3	1.5
8.	20A05302P	Object Oriented Programming Through Java Lab	PC	0	0	3	1.5
9.	20A52201	Universal Human Values	MC	3	0	0	3
10.	20A05304	Skill Oriented Course – I Web application Development	SC	1	0	2	2
Total						24.5	

	Semester-IV							
S.No	Course Code	Course Name	Category	Category Hours per week		ek	Credits	
			-	L	Т	P		
1.	20A54404	Deterministic & Stochastic Statistical Methods	BS	3	0	0	3	
2.	20A05401T	Database Management Systems	PC	3	0	0	3	
3.	20A05402T	Operating Systems	PC	3	0	0	3	
4.	20A30401T	Artificial Intelligence	PC	3	0	0	3	
5.	20A52301 20A52302 20A52303	Humanities Elective– I Managerial Economics & Financial Analysis Organizational Behaviour Business Environment	HS	3	0	0	3	
6.	20A05401P	Database Management SystemsLab	PC	0	0	3	1.5	
7.	20A05402P	Operating SystemsLab	PC	0	0	3	1.5	
8.	20A30401P	Artificial Intelligence Lab	PC	0	0	3	1.5	
9.	20A05404	Skill Oriented Course– II Exploratory Data Analysis with R	SC	1	0	2	2	
10.	20A99401	Mandatory noncrdit course Design Thinking for Innovation	MC	2	1	0	0	
11.	20A99301	NSS/NCC/NSO Activities	MC	0	0	2	0	
	Total 21.5							
Community Service Internship/Project(Mandatory) for 6 weeks duration during summer vacation								

Note:

Eligible and interested students can register either for Honors or for a Minor in IV Semester as per the guidelines issued by the University
 Students shall register for NCC/NSS/NSO activities and will be required to participate in an activity for

two hours in a week during fourth semester.

3. Lateral entry students shall undergo a bridge course in Mathematics during third semester

		Semester-V				
S.No.	Course Code	Course Name	L	Т	Р	Credits
1.	20A30502a	Software Engineering for AI	3	0	0	3
2.	20A05602T	Machine Learning	3	0	0	3
3.	20A05703c	Deep Learning	3	0	0	3
4.		Professional Elective Course – I	3	0	0	3
	20A05504c	Big Data Technologies				
	20A05501T	Computer Networks				
	20A31501a	Robotic Process Automation				
5.		Open Elective Course – I	3	0	0	3
6.	20A05602P	Machine Learning Lab	0	0	3	1.5
7.	20A31502	Deep Learning Lab	0	0	3	1.5
8.		Skill oriented course – III	1	0	2	2
	20A30503	Web Application Design				
9.	20A33501	Evaluation of Community Service Project				1.5
10		Mandatory noncredit course	3	0	0	0
10.	20A99201	Environmental Science	5	U	U	U
Total					21.5	

Open Elective-I

S.No	Course	Course Name	Offered by the Dept.
	Code		
1	20A01505	Building Technology	CE
2	20A02505	Electric Vehicles	EEE
3	20A03505	3D Printing Technology	ME
4	20A04507	MATLAB Programming for Engineers	ECE/EEE
5	20A04508	Introduction to Control Systems	ECE/EEE
6	20A27505	Computer Applications in Food Processing	FT
7	20A54501	Optimization Techniques	Mathematics
8	20A56501	Materials Characterization Techniques	Physics
9	20A51501	Chemistry of Energy Materials	Chemistry

Note:

1. A student is permitted to register for Honours or a Minor in IV semester after the results of III Semester are declared and students may be allowed to take maximum two subjects per semester pertaining to their Minor from V Semester onwards.

2. A student shall not be permitted to take courses as Open Electives/Minor/Honours with content substantially equivalent to the courses pursued in the student's primary major.

3. A student is permitted to select a Minor program only if the institution is already offering a Major degree program in that discipline

		Semester-VI				
S.No	Course Code	Course Name	L	Т	Р	Credits
1.	20A05702c	Natural Language Processing	3	0	0	3
2.	20A33601T	Advanced Machine Learning	3	0	0	3
3.	20A05701a	Cloud Computing	3	0	0	3
4.		Professional Elective Course– II	3	0	0	3
	20A31601a	Robotics				
	20A33602a	Automation of Model Building				
	20A05604c	Computer Vision				
5.		Open Elective Course – II	3	0	0	3
6.	20A30603	Natural Language Processing Lab	0	0	3	1.5
7.	20A33601P	Advanced Machine Learning Lab	0	0	3	1.5
8.	20A12604	Cloud Computing Lab	0	0	3	1.5
9.		Skill oriented course - IV	1	0	2	2
	20A52401	Soft Skills				
10.	20A99601	Mandatory Non-credit Course Intellectual Property Rights & Patents	2	0	0	0
Total					21.5	
	Industry Internship (Mandatory) for 6 - 8 weeks duration during summer vacation					

Open Elective-II

S.No	Course Code	Course Name	Offered by the Dept.
1	20A01605	Environmental Economics	CE
2	20A02605	Smart Electric Grid	EEE
3	20A04605	Signal Processing	ECE
4	20A04606	Basic VLSI Design	ECE
5	20A27605	Food Refrigeration and Cold Chain Management	FT
6	20A54701	Wavelet Transforms & its applications	Mathematics
7	20A56701	Physics Of Electronic Materials and Devices	Physics
8	20A51701	Chemistry of Polymers and its Applications	Chemistry

		Semester-VII						
S.No.	Course Code	Course Name	L	Т	Р	Credits		
1.		Professional Elective Course– III	3	0	0	3		
	20A31701a	Recommender Systems						
	20A30701b	Intelligent Information Retrieval Systems						
	20A30701c	Knowledge Representation and Reasoning						
2.		Professional Elective Course– IV	3	0	0	3		
	20A31702a	Optimization Techniques In AI						
	20A30702b	AI for Image Analysis						
	20A33701a	Machine Learning for Unstructured data						
3.		Professional Elective Course– V	3	0	0	3		
	20A30703a	Dev Ops						
	20A05703b	Block Chain Technology and Applications						
	20A30703b	Reinforcement Learning						
4.		Humanities Elective – II	3	0	0	3		
	20A52701a	Entrepreneurship and Incubation						
	20A52701b	Management Science						
	20A52701c	Enterprise Resource Planning						
5.		Open Elective Course – III	3	0	0	3		
6.		Open Elective Course – IV	3	0	0	3		
7.		Skill oriented course – V	1	0	2	2		
	20A30704	Conversational AI						
8.	20A33702	Evaluation of Industry Internship				3		
	Total 23							

Open Elective-III

S.No	Course Code	Course Name	Offered by the Dept.	
1	20A01704	Cost Effective Housing Techniques	СЕ	
2	20A02704	IOT Applications in Electrical Engineering	EEE	
3	20A03704	Product Design & Development	ME	
4	20A04704	Electronic Sensors	ECE	
5	20A04506	Principles of Communication Systems	ECE	
6	20A27704	Human Nutrition	FT	
7	20A54702	Numerical Methods for Engineers	Mathematics	
8	20A56702	Sensors And Actuators for Engineering Applications	Physics	
9	20A51702	Chemistry of Nanomaterials and Applications	Chemistry	

Open Elective-IV

S.No	Course Code	Course Name	Offered by the Dept.
1	20A01705	Health, Safety & Environmental management	CE
2	20A02705	Renewable Energy Systems	EEE
3	20A03705	Introduction to Composite Materials	ME
4	20A04705	Microcontrollers and Applications	ECE
5	20A04706	Principles of Cellular & Mobile Communications	ECE
6	20A27705	Waste and Effluent Management	FT
7	20A54703	Number theory & its applications	Mathematics
8	20A56703	Smart Materials and Devices	Physics
9	20A51703	Green Chemistry and Catalysis for Sustainable	Chemistry

	Semester-VIII						
S.No.	Course Code	Course Name	Category	L	Т	Р	Credits
1.	20A33801	Full Internship & Project work	PR				12
						Total	12

COURSES OFFERED FOR HONOURS DEGREE IN CSE (AI & ML)

S.No.	Code	Course Name	Contact Hours per week		Credits
			L	Т	
1	20A30H01	Virtual and Augmented reality	3	1	4
2	20A33H01	Software Project Management using Agile	3	1	4
3	20A30H03	Ethics and Privacy in AI	3	1	4
4	20A30H04	Medical Image Data Processing	3	1	4
5	20A33H02	MOOC - I			2
6	20A33H03	MOOC - II			2

MOOC Courses for a	AI Chatbots without	2 weeks	https://www.edx.org/course/AI-
Total of 2 credits	Programming		chatbots-without-programming
	Robot Development	6 weeks	https://www.edx.org/course/developm ental-robotics
MOOC Course for 2 credits	Introduction to Watson AI	8 weeks	https://www.edx.org/course/intro-to- watson-AI
MOOC Course for 2 credits	Artificial Intelligence A-Z: Learn How to Build an AI (Paid Course)	Equivalent to 8 Weeks	https://www.udemy.com/course/artific ial-intelligence-az/
MOOC Course for 2 credits	Introduction to Haskell Programming	8 weeks	https://onlinecourses.nptel.ac.in/noc22 _cs69/preview
MOOC Course for 2 credits	Applied Accelerated Artificial Intelligence	12 weeks (To be considered only for 8 weeks)	https://onlinecourses.nptel.ac.in/noc22 _cs83/preview
S.No.	Minor Title	Department offering the Minor	
-------	-----------------------------	-------------------------------	
1.	Construction Technology	Civil Engineering	
2.	Environmental Geotechnology	Civil Engineering	
3.	Energy Systems	EEE	
4.	3D Printing	ME	
5.	Industrial Engineering	ME	
6.	Food Science	Food Technology	

LIST OF MINORS OFFERED TO CSE (AI & ML)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech -CSE -(AI &ML)– I Sem L T P C 3 0 0 3

(20A54101) LINEAR ALGEBRA & CALCULUS

(Common to All Branches of Engineering)

Course Objectives:

- This course will illuminate the students in the concepts of calculus and linear algebra.
- To equip the students with standard concepts and tools at an intermediate to advanced level mathematics to develop the confidence and ability among the students to handle various real world problems and their applications.

UNIT -1

Matrices

Rank of a matrix by echelon form, normal form. Solving system of homogeneous and nonhomogeneous equations linear equations. Eigen values and Eigenvectors and their properties, Cayley-Hamilton theorem (without proof), finding inverse and power of a matrix by Cayley-Hamilton theorem, diagonalisation of a matrix.

Learning Outcomes:

At the end of this unit, the student will be able to

- Solving systems of linear equations, using technology to facilitate row reduction determine the rank, eigen values and eigenvectors (L3).
- Identify special properties of a matrix, such as positive definite, etc., and use this information to facilitate the calculation of matrix characteristics; (L3)

UNIT -2

Mean Value Theorems

Rolle's Theorem, Lagrange's mean value theorem, Cauchy's mean value theorem, Taylor's and Maclaurin theorems with remainders (without proof) related problems.

Learning Outcomes:

At the end of this unit, the student will be able to

- Translate the given function as series of Taylor's and Maclaurin's with remainders (L3)
- Analyze the behaviour of functions by using mean value theorems (L3)

UNIT -3

Multivariable Calculus

Partial derivatives, total derivatives, chain rule, change of variables, Jacobians, maxima and minima of functions of two variables, method of Lagrange multipliers.

Learning Outcomes:

At the end of this unit, the student will be able to

- Find partial derivatives numerically and symbolically and use them to analyze and interpret the way a function varies. (L3)
- Acquire the Knowledge maxima and minima of functions of several variable (L1)
- Utilize Jacobian of a coordinate transformation to deal with the problems in change of variables (L3)

UNIT -4

Multiple Integrals

Double integrals, change of order of integration, change of variables. Evaluation of triple integrals, change of variables between Cartesian, cylindrical and spherical polar co-ordinates. Finding areas and volumes using double and triple integrals.

Learning Outcomes:

At the end of this unit, the student will be able to

- Evaluate double integrals of functions of several variables in two dimensions using Cartesian and polar coordinates (L5)
- Apply double integration techniques in evaluating areas bounded by region (L4)
- Evaluate multiple integrals in Cartesian, cylindrical and spherical geometries (L5)

UNIT -5

Beta and Gamma functions

Beta and Gamma functions and their properties, relation between beta and gamma functions, evaluation of definite integrals using beta and gamma functions.

Learning Outcomes:

At the end of this unit, the student will be able to

- Understand beta and gamma functions and its relations (L2)
- Conclude the use of special function in evaluating definite integrals (L4)

Text Books:

- 1. B. S. Grewal, Higher Engineering Mathematics, 44/e, Khanna Publishers, 2017.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, 10/e, John Wiley & Sons, 2011.

Reference Books:

- 1. R. K. Jain and S. R. K. Iyengar, Advanced Engineering Mathematics, 3/e, Alpha Science International Ltd., 2002.
- 2. George B. Thomas, Maurice D. Weir and Joel Hass, Thomas Calculus, 13/e, Pearson Publishers, 2013.
- 3. Glyn James, Advanced Modern Engineering Mathematics, 4/e, Pearson publishers, 2011.
- 4. Micheael Greenberg, Advanced Engineering Mathematics, 9th edition, Pearson edn
- 5. Dean G. Duffy, Advanced Engineering Mathematics with MATLAB, CRC Press
- 6. Peter O'neil, Advanced Engineering Mathematics, Cengage Learning.
- 7. R.L. Garg Nishu Gupta, Engineering Mathematics Volumes-I & II, Pearson Education
- 8. B. V. Ramana, Higher Engineering Mathematics, McGraw Hill Education

9. H. k Das, Er. RajnishVerma, Higher Engineering Mathematics, S. Chand.

10. N. Bali, M. Goyal, C. Watkins, Advanced Engineering Mathematics, Infinity Science Press.

Course Outcomes:

At the end of the course, the student will be able to

- Develop the use of matrix algebra techniques that is needed by engineers for practical applications (L6)
- Utilize mean value theorems to real life problems (L3)
- Familiarize with functions of several variables which is useful in optimization (L3)
- Students will also learn important tools of calculus in higher dimensions. Students will become familiar with 2- dimensional coordinate systems (L5)
- Students will become familiar with 3- dimensional coordinate systems and also learn the utilization of special functions

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech- CSE -(AI &ML) – I Sem L T P C

3 0 0 3

(20A51101T) CHEMISTRY

(CSE, AI & DS,CSE (AI), CSE(IoT), CSE (Data Science), CSE(AI & ML), IT, ECE, EEE and IT)

Course Objectives:

- To familiarize engineering chemistry and its applications
- To train the students on the principles and applications of electrochemistry and polymers
- To introduce instrumental methods, molecular machines and switches

Unit 1: Structure and Bonding Models:

Planck's quantum theory, dual nature of matter, Schrodinger equation, significance of Ψ and Ψ^2 , applications to hydrogen, molecular orbital theory – bonding in homo- and heteronuclear diatomic molecules – energy level diagrams of O₂ and CO, etc. π -molecular orbitals of butadiene and benzene, calculation ofbond order.

Learning Outcomes:

At the end of this unit, the students will be able to

- Apply Schrodinger wave equation to hydrogen atom (L3)
- Illustrate the molecular orbital energy level diagram of different molecular species (L2)
- Explain the calculation of bond order of O₂ and Co molecules (L2)
- Discuss the basic concept of molecular orbital theory (L3)

Unit 2: Modern Engineering materials:

Coordination compounds: Crystal field theory – salient features – splitting in octahedral and tetrahedral geometry. Properties of coordination compounds-Oxidation state, coordination, magnetic and colour.

Semiconductor materials, super conductors- basic concept, band diagrams for conductors, semiconductors and insulators, Effect of doping on band structures.

Supercapacitors: Introduction, Basic concept-Classification – Applications.

Nanochemistry: Introduction, classification of nanometerials, properties and applications of Fullerenes, carbonnano tubes and Graphines nanoparticles.

Learning Outcomes:

At the end of this unit, the students will be able to

- Explain splitting in octahedral and tetrahedral geometry of complexes (L2).
- Discuss the magnetic behaviour and colour of coordination compounds (L3).
- Explain the band theory of solids for conductors, semiconductors and insulators (L2)
- Demonstrate the application of Fullerenes, carbon nano tubes and Graphines nanoparticles (L2).

Unit 3: Electrochemistry and Applications:

Electrodes – concepts, reference electrodes (Calomel electrode, Ag/AgCl electrode and glass electrode); Electrochemical cell, Nernst equation, cell potential calculations and numerical problems,

potentiometry- potentiometric titrations (redox titrations), concept of conductivity, conductivity cell, conductometric titrations (acid-base titrations).

Electrochemical sensors – potentiometric sensors with examples, amperometric sensors with examples.

Primary cells – Zinc-air battery, Secondary cells – Nickel-Cadmium (NiCad), and lithium ion batteriesworking of the batteries including cell reactions; Fuel cells, hydrogen-oxygen, methanol fuel cells – working of the cells.

Learning Outcomes:

At the end of this unit, the students will be able to

- Apply Nernst equation for calculating electrode and cell potentials (L3)
- Differentiate between ph metry, potentiometric and conductometric titrations (L2)
- Explain the theory of construction of battery and fuel cells (L2)
- Solve problems based on cell potential (L3)

Unit 4: Polymer Chemistry:

Introduction to polymers, functionality of monomers, chain growth and step growth polymerization, coordination polymerization, copolymerization (stereospecific polymerization) with specific examples and mechanisms of polymer formation.

Plastics - Thermoplastics and Thermosettings, Preparation, properties and applications of – PVC, Teflon, Bakelite, Nylon-6,6, carbon fibres.

Elastomers–Buna-S, Buna-N–preparation, properties and applications.

Conducting polymers – polyacetylene, polyaniline, polypyrroles – mechanism of conduction and applications.

Learning Outcomes:

At the end of this unit, the students will be able to

- Explain the different types of polymers and their applications (L2)
- Explain the preparation, properties and applications of Bakelite, Nylon-6,6, and carbon fibres (L2)
- Describe the mechanism of conduction in conducting polymers (L2)
- Discuss Buna-S and Buna-N elastomers and their applications (L2)

Unit 5: Instrumental Methods and Applications

Electromagnetic spectrum. Absorption of radiation: Beer-Lambert's law. Principle and applications of pH metry, UV-Visible, IR Spectroscopies. Solid-Liquid Chromatography–TLC, retention time.

Learning outcomes:

After completion of Unit IV, students will be able to:

- Explain the different types of spectral series in electromagnetic spectrum (L2)
- Understand the principles of different analytical instruments (L2)
- Explain the different applications of analytical instruments (L2)

Text Books:

- 1. Jain and Jain, Engineering Chemistry, 16/e, DhanpatRai, 2013.
- 2. Peter Atkins, Julio de Paula and James Keeler, Atkins' Physical Chemistry, 10/e, Oxford University Press, 2010.

Reference Books:

- 1. G.V.Subba Reddy, K.N.Jayaveera and C. Ramachandraiah, Engineering Chemistry, Mc Graw Hill, 2020.
- 2. D. Lee, Concise Inorganic Chemistry, 5/e, Oxford University Press, 2008.
- 3. Skoog and West, Principles of Instrumental Analysis, 6/e, Thomson, 2007.
- 4. J.M.Lehn, Supra Molecular Chemistry, VCH Publications

Course Outcomes:

At the end of the course, the students will be able to:

- Compare the materials of construction for battery and electrochemical sensors (12)
- Explain the preparation, properties, and applications of thermoplastics & thermosetting, elastomers& conducting polymers. (12)
- Explain the principles of spectrometry, slc in separation of solid and liquid mixtures (12)
- Apply the principle of Band diagrams in application of conductors and semiconductors (L3)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech - CSE -(AI &ML) – I Sem L T P C

3 0 0 3

(20A05201T) C-PROGRAMMING & DATA STRUCTURES (Common to All Branches of Engineering)

(Common to All Branches of Engineering)

Course Objectives:

- To illustrate the basic concepts of C programming language.
- To discuss the concepts of Functions, Arrays, Pointers and Structures.
- To familiarize with Stack, Queue and Linked lists data structures.
- To explain the concepts of non-linear data structures like graphs and trees.
- To learn different types of searching and sorting techniques.

UNIT-1

Introduction to C Language - C language elements, variable declarations and data types, operators and expressions, decision statements - If and switch statements, loop control statements - while, for, do-while statements, arrays.

Learning outcomes:

At the end of this unit, the students will be able to

- Use C basic concepts to write simple C programs. (L3)
- Use iterative statements for writing the C programs (L3)
- Use arrays to process multiple homogeneous data. (L3)
- Test and execute the programs and correct syntax and logical errors. (L4)
- Translate algorithms into programs. (L4)
- Implement conditional branching, iteration and recursion. (L2)

UNIT – 2

Functions, types of functions, Recursion and argument passing, pointers, storage allocation, pointers to functions, expressions involving pointers, Storage classes – auto, register, static, extern, Structures, Unions, Strings, string handling functions, and Command line arguments.

Learning outcomes:

At the end of this unit, the students will be able to

- Writing structured programs using C Functions. (L5)
- Writing C programs using various storage classes to control variable access. (L5)
- Apply String handling functions and pointers. (L3)
- Use arrays, pointers and structures to formulate algorithms and write programs.(L3)

UNIT-3

Data Structures, Overview of data structures, stacks and queues, representation of a stack, stack related terms, operations on a stack, implementation of a stack, evaluation of arithmetic expressions, infix, prefix, and postfix notations, evaluation of postfix expression, conversion of expression from infix to postfix, recursion, queues - various positions of queue, representation of queue, insertion, deletion, searching operations.

Learning outcomes:

At the end of this unit, the students will be able to

- Describe the operations of Stack. (L2)
- Explain the different notations of arithmetic expression. (L5)
- Develop various operations on Queues. (L6)

UNIT – 4

Linked Lists – Singly linked list, dynamically linked stacks and queues, polynomials using singly linked lists, using circularly linked lists, insertion, deletion and searching operations, doubly linked lists and its operations, circular linked lists and its operations.

Learning outcomes:

At the end of this unit, the students will be able to

- Analyze various operations on singly linked list. (L4)
- Interpret operations of doubly linked lists. (L2)
- Apply various operations on Circular linked lists. (L6)

UNIT-5

Trees - Tree terminology, representation, Binary trees, representation, binary tree traversals. binary tree operations, **Graphs** - graph terminology, graph representation, elementary graph operations, Breadth First Search (BFS) and Depth First Search (DFS), connected components, spanning trees. **Searching and Sorting** – sequential search, binary search, exchange (bubble) sort, selection sort, insertion sort.

Learning outcomes:

At the end of this unit, the students will be able to

- Develop the representation of Tress. (L3)
- Identify the various Binary tree traversals. (L3)
- Illustrate different Graph traversals like BFS and DFS. (L2)
- Design the different sorting techniques (L6)
- Apply programming to solve searching and sorting problems. (L3)

Text Books:

- 1. The C Programming Language, Brian W Kernighan and Dennis M Ritchie, Second Edition, Prentice Hall Publication.
- 2. Fundamentals of Data Structures in C, Ellis Horowitz, SartajSahni, Susan Anderson-Freed, Computer Science Press.
- 3. Programming in C and Data Structures, J.R.Hanly, Ashok N. Kamthane and A. AnandaRao, Pearson Education.
- 4. B.A. Forouzon and R.F. Gilberg, "COMPUTER SCIENCE: A Structured Programming Approach Using C", Third edition, CENGAGE Learning, 2016.
- 5. Richard F. Gilberg & Behrouz A. Forouzan, "Data Structures: A Pseudocode Approach with C", Second Edition, CENGAGE Learning, 2011.

Reference Books:

- 1. Pradip Dey and Manas Ghosh, Programming in C, Oxford University Press, 2nd Edition 2011.
- 2. E. Balaguruswamy, "C and Data Structures", 4th Edition, Tata Mc Graw Hill.
- 3. A.K. Sharma, Computer Fundamentals and Programming in C, 2nd Edition, University Press.
- 4. M.T. Somashekara, "Problem Solving Using C", PHI, 2nd Edition 2009.

Course Outcomes:

- 1. Analyse the basicconcepts of C Programming language. (L4)
- 2. Design applications in C, using functions, arrays, pointers and structures. (L6)
- 3. Apply the concepts of Stacks and Queues in solving the problems. (L3)
- 4. Explore various operations on Linked lists. (L5)
- 5. Demonstrate various tree traversals and graph traversal techniques. (L2)
- 6. Design searching and sorting methods (L3)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech - CSE -(AI &ML) – I Sem L T P C

3 0 0 3

(20A02101T) BASIC ELECTRICAL & ELECTRONICS ENGINEERING

(Civil, Mechanical, CSE, AI & DS,CSE (AI), CSE(IoT), CSE (Data Science), CSE(AI & ML), IT and Food Technology)

Part A: Basic Electrical Engineering

Course Objectives:

- To introduce basics of electric circuits.
- To teach DC and AC electrical circuit analysis.
- To explain working principles of transformers and electrical machines.
- To impart knowledge on Power system generation, transmission and distribution

UNIT -1

DC & AC Circuits:

Electrical circuit elements (R - L and C) - Kirchhoff laws - Series and parallel connection of resistances with DC excitation. Superposition Theorem - Representation of sinusoidal waveforms - peak and rms values - phasor representation - real power - reactive power - apparent power - power factor - Analysis of single-phase ac circuits consisting of RL - RC - RLC series circuits, Resonance.

Learning Outcomes

At the end of this unit, the student will be able to

- Recall Kirchoff laws
- Analyze simple electric circuits with DC excitation
- Apply network theorems to simple circuits
- Analyze single phase AC circuits consisting of series RL RC RLC combinations

UNIT -2

DC & AC Machines:

Principle and operation of DC Generator - EMF equations - OCC characteristics of DC generator – principle and operation of DC Motor – Performance Characteristics of DC Motor - Speed control of DC Motor – Principle and operation of Single Phase Transformer - OC and SC tests on transformer - Principle and operation of 3-phase AC machines [Elementary treatment only]

Learning Outcomes

At the end of this unit, the student will be able to

- Explain principle and operation of DC Generator & Motor.
- Perform speed control of DC Motor
- Explain operation of transformer and induction motor.
- Explain construction & working of induction motor DC motor

UNIT -3

Basics of Power Systems:

Layout & operation of Hydro, Thermal, Nuclear Stations - Solar & wind generating stations – Typical AC Power Supply scheme – Elements of Transmission line – Types of Distribution systems: Primary & Secondary distribution systems.

Learning Outcomes

At the end of this unit, the student will be able to

- Understand working operation of various generating stations
- Explain the types of Transmission and Distribution systems

Text Books:

- 1. D. P. Kothari and I. J. Nagrath "Basic Electrical Engineering" Tata McGraw Hill 2010.
- 2. V.K. Mehta & Rohit Mehta, "Principles of Power System" S.Chand 2018.

References:

- 1. L. S. Bobrow "Fundamentals of Electrical Engineering" Oxford University Press 2011.
- 2. E. Hughes "Electrical and Electronics Technology" Pearson 2010.
- 3. C.L. Wadhwa "Generation Distribution and Utilization of Electrical Energy", 3rd Edition, New Age International Publications.

Course Outcomes:

The student should be able to

- Apply concepts of KVL/KCL in solving DC circuits
- Understand and choose correct rating of a transformer for a specific application
- Illustrate working principles of DC Motor
- Identify type of electrical machine based on their operation
- Understand the basics of Power generation, Transmission and Distribution

Part 'B'- Electronics Engineering

COURSE OBJECTIVES

- Understand principles and terminology of electronics.
- Familiar with the theory, construction, and operation of electronic devices.
- Learn about biasing of BJTs and FETs.
- Design and construct amplifiers.
- Understand the concept & principles of logic devices.

Unit-1:

Diodes and Applications: Semiconductor Diode, Diode as a Switch& Rectifier, Half Wave and Full Wave Rectifiers with and without Filters; Operation and Applications of Zener Diode, LED, Photo Diode.

Transistor Characteristics: Bipolar Junction Transistor (BJT) – Construction, Operation, Amplifying Action, Common Base, Common Emitter and Common Collector Configurations, Operating Point, Biasing of Transistor Configuration; Field Effect Transistor (FET) – Construction, Characteristics of Junction FET, Concepts of Small Signal Amplifiers –CE & CC Amplifiers.

Learning outcomes:

At the end of this unit, the student will be able to

- Remember and understand the basic characteristics of semiconductor diode. (L1)
- Understand principle of operation of Zener diode and other special semiconductor diodes. (L1)
- Analyze BJT based biasing circuits. (L3)
- Design an amplifier using BJT based on the given specifications. (L4)

Unit-2:

Operational Amplifiers and Applications: Introduction to Op-Amp, Differential Amplifier Configurations, CMRR, PSRR, Slew Rate; Block Diagram, Pin Configuration of 741 Op-Amp, Characteristics of Ideal Op-Amp, Concept of Virtual Ground; Op-Amp Applications - Inverting, Non-Inverting, Summing and Difference Amplifiers, Voltage Follower, Comparator, Differentiator, Integrator.

Learning outcomes:

At the end of this unit, the student will be able to

- Describe operation of Op-Amp based linear application circuits, converters, amplifiers and non-linear circuits. (L2)
- Analyze Op-Amp based comparator, differentiator and integrator circuits. (L3)

Unit-3:

Digital Electronics: Logic Gates, Simple combinational circuits–Half and Full Adders, BCD Adder.Latches and Flip-Flops (S-R, JK andD), Shift Registers and Counters.Introduction to Microcontrollers and their applications (Block diagram approach only).

Learning outcomes:

At the end of this unit, the student will be able to

- Explain the functionality of logic gates. (L2)
- Apply basic laws and De Morgan's theorems to simplify Boolean expressions. (L3)
- Analyze standard combinational and sequential circuits. (L4)
- Distinguish between 8085 & 8086 microprocessors also summarize features of a microprocessor. (L5)

Text Books:

- 1. R.L.Boylestad& Louis Nashlesky, Electronic Devices & Circuit Theory, Pearson Education, 2007.
- 2. Ramakanth A. Gayakwad, Op-Amps & Linear ICs, 4thEdition, Pearson, 2017.

- 3. R. P. Jain, Modern Digital Electronics, 3rd Edition, Tata Mcgraw Hill, 2003.
- 4. Raj Kamal, Microcontrollers: Architecture, Programming, Interfacing and System Design, 2nd Edition, Pearson, 2012.

Reference Books:

- 1. SantiramKal, Basic Electronics- Devices, Circuits and IT Fundamentals, Prentice Hall, India,2002.
- 2. R. S. Sedha, A Text Book of Electronic Devices and Circuits, S.Chand& Co,2010.
- 3. R. T. Paynter, Introductory Electronic Devices & Circuits Conventional Flow Version, Pearson Education, 2009.

COURSE OUTCOMES:

After the completion of the course students will able to

- Explain the theory, construction, and operation of electronic devices.
- Apply the concept of science and mathematics to explain the working of diodes and its applications, working of transistor and to solve the simple problems based on the applications
- Analyze small signal amplifier circuits to find the amplifier parameters
- Design small signal amplifiers using proper biasing circuits to fix up proper Q point.
- Distinguish features of different active devices including Microprocessors.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech- CSE -(AI &ML)– I Sem L T P C

0 0 3 1.5

(20A03202) ENGINEERING WORKSHOP

(Common to All Branches of Engineering)

Course Objective:

To familiarize students with wood working, sheet metal operations, fitting and electrical house wiring skills

List of Topics

Wood Working:

Familiarity with different types of woods and tools used in wood working and make following joints a) Half – Lap joint b) Mortise and Tenon joint c) Corner Dovetail joint or Bridle joint

Sheet Metal Working:

Familiarity with different types of tools used in sheet metal working, Developments of following sheet metal job from GI sheets

a) Tapered tray b) Conical funnel c) Elbow pipe d) Brazing

Fitting:

Familiarity with different types of tools used in fitting and do the following fitting exercises a) V-fit b) Dovetail fit c) Semi-circular fit d) Bicycle tire puncture and change of two wheeler tyre

Electrical Wiring:

Familiarities with different types of basic electrical circuits and make the following connections

- a) Parallel and series b) Two way switch c) Godown lighting
- d) Tube light e) Three phase motor f) Soldering of wires

Course Outcomes:

After completion of this lab the student will be able to

- Apply wood working skills in real world applications. (13)
- Build different objects with metal sheets in real world applications. (13)
- Apply fitting operations in various applications. (13)
- Apply different types of basic electric circuit connections. (13)
- Use soldering and brazing techniques. (l2)

Note: In each section a minimum of three exercises are to be carried out.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech - CSE -(AI &ML) – I Sem L T P C 0 0 3 1.5

(20A05202) IT WORKSHOP

(Common to All Branches of Engineering)

Course Objectives:

- To make the students know about the internal parts of a computer, assembling and dissembling a computer from the parts, preparing a computer for use by installing the operating system
- To provide Technical training to the students on Productivity tools like Word processors, Spreadsheets, Presentations and LAteX
- To learn about Networking of computers and use Internet facility for Browsing and Searching

Preparing your Computer

Task 1:

Learn about Computer: Identify the internal parts of a computer, and its peripherals. Represent the same in the form of diagrams including Block diagram of a computer. Write specifications for each part of a computer including peripherals and specification of Desktop computer. Submit it in the form of a report.

Task 2:

Assembling a Computer: Disassemble and assemble the PC back to working condition. Students should be able to trouble shoot the computer and identify working and non-working parts. Student should identify the problem correctly by various methods

Task 3:

Install Operating system: Student should install Linux on the computer. Student may install another operating system (including proprietary software) and make the system dual boot or multi boot. Students should record the entire installation process.

Task 4:

Operating system features: Students should record the various features that are supported by the operating system(s) installed. They have to submit a report on it. Students should be able to access CD/DVD drives, write CD/DVDs, access pen drives, print files, etc. Students should install new application software and record the installation process.

Networking and Internet

Task 5:

Networking: Students should connect two computers directly using a cable or wireless connectivity and share information. Students should connect two or more computers using switch/hub and share information. Crimpling activity, logical configuration etc. should be done by the student. The entire process has to be documented.

Task 6:

Browsing Internet: Student should access the Internet for Browsing. Students should search the Internet for required information. Students should be able to create e-mail account and send email. They should get acquaintance with applications like Facebook, skype etc. If Intranet mailing facility is available in the organization, then students should share the information using it. If the operating system supports sending messages to multiple users (LINUX supports it) in the same network, then it should be done by the student. Students are expected to submit the information about different browsers available, their features, and search process using different natural languages, and creating email account.

Task 7:

Antivirus: Students should download freely available Antivirus software, install it and use it to check for threats to the computer being used. Students should submit information about the features of the antivirus used, installation process, about virus definitions, virus engine etc. **Productivity tools**

Task 8:

Word Processor: Students should be able to create documents using the word processor tool. Some of the tasks that are to be performed are inserting and deleting the characters, words and lines, Alignment of the lines, Inserting header and Footer, changing the font, changing the colour, including images and tables in the word file, making page setup, copy and paste block of text, images, tables, linking the images which are present in other directory, formatting paragraphs, spell checking, etc. Students should be able to prepare project cover pages, content sheet and chapter pages at the end of the task using the features studied. Students should submit a user manual of the word processor considered, Image Manipulation tools.

Task 9:

Presentations: creating, opening, saving and running the presentations, selecting the style for slides, formatting the slides with different fonts, colours, creating charts and tables, inserting and deleting text, graphics and animations, bulleting and numbering, hyperlinking, running the slide show, setting the timing for slide show.

Task 10:

Spreadsheet: Students should be able to create, open, save the application documents and format them as per the requirement. Some of the tasks that may be practiced are Managing the worksheet environment, creating cell data, inserting and deleting cell data, format cells, adjust the cell size, applying formulas and functions, preparing charts, sorting cells. Students should submit a user manual of the Spreadsheet

Task 11:

LateX: Introduction to Latex and its installation and different IDEs. Creating first document using Latex, using content into sections using article and book class of LaTeX. Styling Pages: reviewing and customizing different paper sizes and formats. Formatting text (styles, size, alignment, colors and adding bullets and numbered items, inserting mathematical symbols, and images, etc.). Creating basic

tables, adding simple and dashed borders, merging rows and columns. Referencing and Indexing: cross-referencing (refer to sections, table, images), bibliography (references).

References:

- 1. Introduction to Computers, Peter Norton, McGraw Hill
- 2. MOS study guide for word, Excel, Powerpoint& Outlook Exams, Joan Lambert, Joyce Cox, PHI.
- 3. Introduction to Information Technology, ITL Education Solutions limited, Pearson Education.
- 4. Networking your computers and devices, Rusen, PHI
- 5. Trouble shooting, Maintaining & Repairing PCs, Bigelows, TMH
- 6. Lamport L. LATEX: a document preparation system: user's guide and reference manual. Addison-wesley; 1994.

Course Outcomes:

- Disassemble and Assemble a Personal Computer and prepare the computer ready to use.
- Prepare the Documents using Word processors and Prepare spread sheets for calculations .using excel and also the documents using LAteX.
- Prepare Slide presentations using the presentation tool.
- Interconnect two or more computers for information sharing.
- Access the Internet and Browse it to obtain the required information.

Note: Use open source tools for implementation of the above exercises.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech- CSE -(AI &ML) – I Sem L T P C

0 0 3 1.5

(20A51101P) CHEMISTRY LAB

(CSE, AI & DS,CSE (AI), CSE(IoT), CSE (Data Science), CSE(AI & ML), IT, ECE, EEE and IT)

Course Objectives:

• Verify the fundamental concepts with experiments

List of Experiments:

- 1. Measurement of 10Dq by spectrophotometric method
- 2. Models of potential energy surfaces
- 3. Conductometric itration of (i) strong acid vs. strong base, (ii) weak acid vs. strong base
- 4. Determination of cell constant and conductance of solutions
- 5. Potentiometry determination of redox potentials and emfs
- 6. Determination of Strength of an acid in Pb-Acid battery
- 7. Preparation of a Bakelite and measurement of its mechanical properties (strength.).
- 8. Verify Lambert-Beer's law
- 9. Thin layer chromatography
- 10. Identification of simple organic compounds by IR.
- 11. Preparation of nanomaterial's by precipitation
- 12. Estimation of Ferrous Iron by Dichrometry.

Course Outcomes:

At the end of the course, the students will be able to

- Determine the cell constant and conductance of solutions (L3)
- Prepare advanced polymer Bakelite materials (L2)
- Measure the strength of an acid present in secondary batteries (L3)
- Analyse the IR of some organic compounds (L3)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech- CSE -(AI &ML)-I Sem L T P

0 0 3 1.5

С

(20A05201P) C-PROGRAMMING & DATA STRUCTURES LAB

(Common to All Branches of Engineering)

Course Objectives:

- To get familiar with the basic concepts of C programming.
- To design programs using arrays, strings, pointers and structures.
- To illustrate the use of Stacks and Queues
- To apply different operations on linked lists.
- To demonstrate Binary search tree traversal techniques.
- To design searching and sorting techniques.

Week l

Write C programs that use both recursive and non-recursive functions

- i) To find the factorial of a given integer.
- ii) To find the GCD (greatest common divisor) of two given integers.
- iii) To solve Towers of Hanoi problem.

Week 2

- a) Write a C program to find both the largest and smallest number in a list of integers.
- b) Write a C program that uses functions to perform the following:i) Addition of Two Matrices ii) Multiplication of Two Matrices

Week 3

- a) Write a C program that uses functions to perform the following operations:
 - i) To insert a sub-string in to a given main string from a given position.
 - ii) To delete n characters from a given position in a given string.

Week 4

- a) Write a C program that displays the position or index in the string S where the string T begins, or -1 if S doesn't contain T.
- b) Write a C program to count the lines, words and characters in a given text.

Week 5

- a) Write a C Program to perform various arithmetic operations on pointer variables.
- b) Write a C Program to demonstrate the following parameter passing mechanisms:i) call-by-valueii) call-by-reference

Week 6

Write a C program that uses functions to perform the following operations:

- i) Reading a complex number
- ii) Writing a complex number
- iii) Addition of two complex numbers
- iv) Multiplication of two complex numbers

(Note: represent complex number using a structure.)

Week 7

Write C programs that implement stack (its operations) using

- i) Arrays
- ii) Pointers

Week 8

Write C programs that implement Queue (its operations) using

- i) Arrays
- ii) Pointers

Week 9

Write a C program that uses Stack operations to perform the following:

- i) Converting infix expression into postfix expression
- ii) Evaluating the postfix expression

Week 10

Write a C program that uses functions to perform the following operations on singly linked list.

i) Creation ii) Insertion iii) Deletion iv) Traversal

Week 11

Write a C program that uses functions to perform the following operations on Doubly linkedlist.

i) Creation ii) Insertion iii) Deletion iv) Traversal

Week 12

Write a C program that uses functions to perform the following operations on circular linkedlist.

i) Creation ii) Insertion iii) Deletion iv) Traversal

Week 13

Write a C program that uses functions to perform the following:

- i) Creating a Binary Tree of integers
- ii) Traversing the above binary tree in preorder, inorder and postorder.

Week 14

Write C programs that use both recursive and non-recursive functions to perform the following searching operations for a key value in a given list of integers:

- i) Linear search
- ii) Binary search

Week 15

Write a C program that implements the following sorting methods to sort a given list of integers in ascending order

- i) Bubble sort
- ii) Selection sort
- iii) Insertion sort

Text Books:

- 1. Programming in C and Data Structures, J.R.Hanly, Ashok N. Kamthane and A. Ananda Rao, Pearson Education.
- 2. B.A. Forouzon and R.F. Gilberg, "COMPUTER SCIENCE: A Structured Programming Approach Using C", Third edition, CENGAGE Learning, 2016.
- 3. Richard F. Gilberg & Behrouz A. Forouzan, "Data Structures: A Pseudocode Approach with C", Second Edition, CENGAGE Learning, 2011.

Reference Books:

- 1. PradipDey and ManasGhosh, Programming in C, Oxford University Press, 2nd Edition 2011.
- 2. E.Balaguruswamy, "C and Data Structures", 4th Edition, Tata Mc Graw Hill.
- 3. A.K.Sharma, Computer Fundamentals and Programming in C, 2nd Edition, University Press.
- 4. M.T.Somashekara, "Problem Solving Using C", PHI, 2nd Edition 2009.

Course Outcomes

- Demonstrate basic concepts of C programming language. (L2)
- Develop C programs using functions, arrays, structures and pointers. (L6)
- Illustrate the concepts Stacks and Queues. (L2)
- Design operations on Linked lists. (L6)
- Apply various Binary tree traversal techniques. (L3)
- Develop searching and sorting methods. (L6)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech- CSE -(AI &ML) – I Sem L T P C 0 0 3 1.5

(20A02101P) BASIC ELECTRICAL & ELECTRONICS ENGINEERING LAB (Civil, Mechanical, CSE, AI & DS,CSE (AI), CSE(IoT), CSE (Data Science), CSE(AI & ML), IT and Food Technology)

Part A: Electrical Engineering Lab

Course Objectives:

- To Verify Kirchoff's laws and Superposition theorem
- To learn performance characteristics of DC Machines.
- To perform various tests on 1- Phase Transformer.
- To Study the I V Characteristics of Solar PV Cell

List of experiments: -

- 1. Verification of Kirchhoff laws.
- 2. Verification of Superposition Theorem.
- 3. Magnetization characteristics of a DC Shunt Generator.
- 4. Speed control of DC Shunt Motor.
- 5. OC & SC test of 1 Phase Transformer.
- 6. Load test on 1-Phase Transformer.
- 7. I V Characteristics of Solar PV cell
- 8. Brake test on DC Shunt Motor.

Course Outcomes:

After completing the course, the student will be able to

- Understand Kirchoff's Laws & Superposition theorem.
- Analyze the various characteristics on DC Machines by conducting various tests.
- Analyze I V Characteristics of PV Cell
- Apply the knowledge to perform various tests on 1-phase transformer

Part B: Electronics Engineering Lab

Course Objectives:

- To verify the theoretical concepts practically from all the experiments.
- To analyze the characteristics of Diodes, BJT, MOSFET, UJT.
- To design the amplifier circuits from the given specifications.
- Exposed to linear and digital integrated circuits.

List Of Experiments:

1. PN Junction diode characteristics A) Forward bias B) Reverse bias.

- 2. Zener diode characteristics and Zener as voltage Regulator.
- 3. Full Wave Rectifier with & without filter.
- 4. Wave Shaping Circuits. (Clippers & Clampers)
- 5. Input & Output characteristics of Transistor in CB / CE configuration.
- 6. Frequency response of CE amplifier.
- 7. Inverting and Non-inverting amplifiers using Op-AMPs.
- 8. Verification of Truth Table of AND, OR, NOT, NAND, NOR, Ex-OR, Ex-NOR gates using ICs.
- 9. Verification of Truth Tables of S-R, J-K& D flip flops using respective ICs.

Tools / Equipment Required: DC Power supplies, Multi meters, DC Ammeters, DC Voltmeters, AC Voltmeters, CROs, all the required active devices.

Course outcomes:

- Learn the characteristics of basic electronic devices like PN junction diode, Zener diode & BJT.
- Construct the given circuit in the lab
- Analyze the application of diode as rectifiers, clippers and clampers and other circuits.
- Design simple electronic circuits and verify its functioning.

Note: Minimum Six Experiments to be performed in each section.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech- CSE -(AI &ML) – II Sem L T P C

3 0 0 3

(20A54202) PROBABILITY AND STATISTICS

(Common to CSE, AI & DS,CSE (AI), CSE(IoT), CSE (Data Science), CSE(AI & ML) and IT)

Course Objectives:

- To familiarize the students with the foundations of probability and statistical methods
- To impart probability concepts and statistical methods in various applications Engineering

Unit 1:

Descriptive statistics

Statistics Introduction, Measures of Variability (dispersion) Skewness Kurtosis, correlation, correlation coefficient, rank correlation, principle of least squares, method of least squares, regression lines, regression coefficients and their properties.

Learning Outcomes:

At the end of this unit, the student will be able to

- summarize the basic concepts of data science and its importance in engineering (L2)
- analyze the data quantitatively or categorically, measure of averages, variability (L4)
- adopt correlation methods and principle of least squares, regression analysis (L5)

UNIT 2: Probability

Probability, probability axioms, addition law and multiplicative law of probability, conditional probability, Baye's theorem, random variables (discrete and continuous), probability density functions, properties.

Learning Outcomes:

At the end of this unit, the student will be able to

- Define the terms trial, events, sample space, probability, and laws of probability (L1)
- Make use of probabilities of events in finite sample spaces from experiments (L3)
- Apply Baye's theorem to real time problems (L3)
- Explain the notion of random variable, distribution functions and expected value(L2)

UNIT 3:

Probability distributions

Discrete distribution - Binomial, Poisson approximation to the binomial distribution and their properties. Continuous distribution: normal distribution and their properties.

Learning Outcomes:

At the end of this unit, the student will be able to

- Apply Binomial and Poisson distributions for real data to compute probabilities, theoretical frequencies (L3)
- Interpret the properties of normal distribution and its applications (L2)

Unit4:

Estimation and Testing of hypothesis, large sample tests

Estimation-parameters, statistics, sampling distribution, point estimation, Formulation of null hypothesis, alternative hypothesis, the critical and acceptance regions, level of significance, two types of errors and power of the test. Large Sample Tests: Test for single proportion, difference of proportions, test for single mean and difference of means. Confidence interval for parameters in one sample and two sample problems

Learning Outcomes:

At the end of this unit, the student will be able to

- Explain the concept of estimation, interval estimation and confidence intervals (L2)
- Apply the concept of hypothesis testing for large samples (L4)

Unit 5:

Small sample tests

Student t-distribution (test for single mean, two means and paired t-test), testing of equality of variances (F-test), $\chi 2$ - test for goodness of fit, $\chi 2$ - test for independence of attributes.

Learning Outcomes:

At the end of this unit, the student will be able to

- Apply the concept of testing hypothesis for small samples to draw the inferences (L3)
- Estimate the goodness of fit (L5)

Text Books:

- 1. Miller and Freunds, Probability and Statistics for Engineers, 7/e, Pearson, 2008.
- 2. S.C. Gupta and V.K. Kapoor, Fundamentals of Mathematical Statistics, 11/e, Sultan Chand & Sons Publications, 2012.

Reference Books:

- 1. S. Ross, a First Course in Probability, Pearson Education India, 2002.
- 2. W. Feller, an Introduction to Probability Theory and its Applications, 1/e, Wiley, 1968.
- 3. Peyton Z. Peebles ,Probability, Random Variables & Random Signal Principles -, McGraw Hill Education, 4th Edition, 2001.

Course Outcomes:

Upon successful completion of this course, the student should be able to

- Make use of the concepts of probability and their applications (L3)
- Apply discrete and continuous probability distributions (L3)
- Classify the concepts of data science and its importance (L4)
- Interpret the association of characteristics and through correlation and regression tools (L4)
- Design the components of a classical hypothesis test (L6)
- Infer the statistical inferential methods based on small and large sampling tests (L6)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech- CSE -(AI &ML) – II Sem L T P C

3 0 0 3

20A56201T APPLIED PHYSICS

(ECE, EEE, CSE, AI & DS, CSE (AI), CSE(IoT), CSE (Data Science), CSE(AI & ML), IT)

Course Objectives

- To make a bridge between the physics in school and engineering courses.
- To identify the importance of the optical phenomenon i.e. interference, diffraction and polarization related to its Engineering applications
- To understand the mechanisms of emission of light, the use of lasers as light sources for low and high energy applications, study of propagation of light wave through optical fibres along with engineering applications.
- To explain the significant concepts of dielectric and magnetic materials that leads to potential applications in the emerging micro devices.
- To enlighten the concepts of Quantum Mechanics and to provide fundamentals of de'Broglie waves, quantum mechanical wave equation and its applications, the importance of free electron theory and band theory of solids.
- Evolution of band theory to distinguish materials, basic concepts and transport phenomenon of charge carriers in semiconductors. To give an impetus on the subtle mechanism of superconductors using the concept of BCS theory and their fascinating applications.

Unit-I:

Wave Optics

Interference- Principle of superposition – Interference of light – Conditions for sustained interference - Interference in thin films (Reflection Geometry) – Colors in thin films – Newton's Rings – Determination of wavelength and refractive index.

Diffraction- Introduction – Fresnel and Fraunhofer diffraction – Fraunhofer diffraction due to single slit, double slit and N-slits (qualitative) – Grating spectrum.

Polarization- Introduction – Types of polarization – Polarization by reflection, refraction and double refraction - Nicol's Prism - Half wave and Quarter wave plates with applications.

Learning Outcomes:

At the end of this unit, the student will be able to

- Explain the need of coherent sources and the conditions for sustained interference (L2)
- Identify engineering applications of interference (L3)
- Analyze the differences between interference and diffraction with applications (L4)
- Illustrate the concept of polarization of light and its applications (L2)
- Classify ordinary polarized light and extraordinary polarized light (L2)

Unit-II:

Lasers and Fiber optics

Lasers- Introduction – Characteristics of laser – Spontaneous and Stimulated emission of radiation – Einstein's coefficients – Population inversion – Lasing action – Pumping mechanisms – Nd-YAG laser – He-Ne laser – Applications of lasers.

Fiber optics- Introduction – Principle of optical fiber – Acceptance Angle – Numerical Aperture – Classification of optical fibers based on refractive index profile and modes – Propagation of electromagnetic wave through optical fibers – Propagation Losses (qualitative) – Applications.

Learning Outcomes:

At the end of this unit, the student will be able to

- Understand the basic concepts of LASER light Sources (L2)
- Apply the concepts to learn the types of lasers (L3)
- Identifies the Engineering applications of lasers (L2)
- Explain the working principle of optical fibers (L2)
- Classify optical fibers based on refractive index profile and mode of propagation (L2)
- Identify the applications of optical fibers in various fields (L2)

Unit-III:

Dielectric and Magnetic Materials

Dielectric Materials- Introduction – Dielectric polarization – Dielectric polarizability, Susceptibility and Dielectric constant – Types of polarizations: Electronic, Ionic and Orientation polarizations (Qualitative) – Lorentz internal field – Clausius-Mossotti equation.

Magnetic Materials- Introduction – Magnetic dipole moment – Magnetization – Magnetic susceptibility and Permeability – Origin of permanent magnetic moment – Classification of magnetic materials: Dia, para & Ferro-Domain concept of Ferromagnetism (Qualitative) – Hysteresis – Soft and Hard magnetic materials.

Learning Outcomes:

At the end of this unit, the student will be able to

- Explain the concept of dielectric constant and polarization in dielectric materials (L2)
- Summarize various types of polarization of dielectrics (L2)
- Interpret Lorentz field and Claussius- Mosotti relation in dielectrics(L2)
- Classify the magnetic materials based on susceptibility and their temperature dependence (L2)
- Explain the applications of dielectric and magnetic materials (L2)
- Apply the concept of magnetism to magnetic devices (L3)

Unit IV:

Quantum Mechanics, Free Electron Theory and Band theory of Solids

Quantum Mechanics- Dual nature of matter – Schrodinger's time independent and dependent wave equation – Significance of wave function – Particle in a one-dimensional infinite potential well.

Free Electron Theory- Classical free electron theory (Merits and demerits only) – Quantum free electron theory – Equation for electrical conductivity based on quantum free electron theory – Fermi-Dirac distribution – Density of states – Fermi energy.

Band theory of Solids- Bloch's Theorem (Qualitative) – Kronig-Penney model (Qualitative) – E vs K diagram – Classification of crystalline solids – Effective mass of electron – m^* vs K diagram – Concept of hole.

Learning Outcomes:

At the end of this unit, the student will be able to

- Explain the concept of dual nature of matter (L2)
- Understand the significance of wave function (L2)
- Interpret the concepts of classical and quantum free electron theories (L2)
- Explain the importance of K-P model
- Classify the materials based on band theory (L2)
- Apply the concept of effective mass of electron (L3)

Unit – V:

Semiconductors and Superconductors

Semiconductors- Introduction – Intrinsic semiconductors – Density of charge carriers – Electrical conductivity – Fermi level – Extrinsic semiconductors – Density of charge carriers – Dependence of Fermi energy on carrier concentration and temperature – Drift and diffusion currents – Einstein's equation – Direct and indirect band gap semiconductors – Hall effect – Hall coefficient – Applications of Hall effect.

Superconductors- Introduction – Properties of superconductors – Meissner effect – Type I and Type II superconductors – BCS theory – Josephson effects (AC and DC) – High T_c superconductors – Applications of superconductors.

Learning Outcomes:

At the end of this unit, the student will be able to

- Classify the energy bands of semiconductors (L2)
- Interpret the direct and indirect band gap semiconductors (L2)
- Identify the type of semiconductor using Hall effect (L2)
- Identify applications of semiconductors in electronic devices (L2)
- Explain how electrical resistivity of solids changes with temperature (L2)
- Classify superconductors based on Meissner's effect (L2)
- Explain Meissner's effect, BCS theory & Josephson effect in superconductors (L2)

Text books:

1. Engineering Physics – Dr. M.N. Avadhanulu & Dr. P.G. Kshirsagar, S. Chand and Company

2. Engineering Physics – B.K. Pandey and S. Chaturvedi, Cengage Learning.

Reference Books:

- 1. Engineering Physics Shatendra Sharma, Jyotsna Sharma, Pearson Education, 2018
- 2. Engineering Physics K. Thyagarajan, McGraw Hill Publishers
- 3. Engineering Physics Sanjay D. Jain, D. Sahasrambudhe and Girish, University Press
- 4. Semiconductor physics and devices- Basic principle Donald A, Neamen, Mc Graw Hill

Course Outcomes

- Study the different realms of physics and their applications in both scientific and technological systems through physical optics. (L2)
- Identify the wave properties of light and the interaction of energy with the matter (L3).
- Asses the electromagnetic wave propagation and its power in different media (L5).
- Understands the response of dielectric and magnetic materials to the applied electric and magnetic fields. (L3)
- Study the quantum mechanical picture of subatomic world along with the discrepancies between the classical estimates and laboratory observations of electron transportation phenomena by free electron theory and band theory. (L2)
- Elaborate the physical properties exhibited by materials through the understanding of properties of semiconductors and superconductors. (L5)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech- CSE -(AI &ML) – II Sem L T P C 3 0 0 3

(20A52101T) COMMUNICATIVE ENGLISH (Common to All Branches of Engineering)

Course Objectives

- Facilitate effective listening skills for better comprehension of academic lectures and English spoken by native speakers
- Focus on appropriate reading strategies for comprehension of various academic texts and authentic materials
- Help improve speaking skills through participation in activities such as role plays, discussions and structured talks/oral presentations
- Impart effective strategies for good writing and demonstrate the same in summarizing, writing well organized essays, record and report useful information
- Provide knowledge of grammatical structures and vocabulary and encourage their appropriate use in speech and writing

UNIT -1

Lesson: On the Conduct of Life: William Hazlitt

Listening: Identifying the topic, the context and specific pieces of information by listening to short audio texts and answering a series of questions. **Speaking:** Asking and answering general questions on familiar topics such as home, family, work, studies and interests; introducing oneself and others. **Reading:** Skimming to get the main idea of a text; scanning to look for specific pieces of information. **Reading for Writing :**Beginnings and endings of paragraphs - introducing the topic, summarizing the main idea and/or providing a transition to the next paragraph. **Grammar and Vocabulary:** Parts of Speech, Content words and function words; word forms: verbs, nouns, adjectives and adverbs; nouns: countable and uncountable; singular and plural; basic sentence structures; simple question form - wh-questions; word order in sentences.

Learning Outcomes

At the end of the module, the learners will be able to

- Understand social or transactional dialogues spoken by native speakers of English and identify the context, topic, and pieces of specific information
- Ask and answer general questions on familiar topics and introduce oneself/others
- Employ suitable strategies for skimming and scanning to get the general idea of a text and locate specific information
- Recognize paragraph structure and be able to match beginnings/endings/headings with paragraphs
- Form sentences using proper grammatical structures and correct word forms

UNIT -2

Lesson: The Brook: Alfred Tennyson

Listening: Answering a series of questions about main idea and supporting ideas after listening to audio texts. **Speaking:** Discussion in pairs/small groups on specific topics followed by short structured talks. **Reading:** Identifying sequence of ideas; recognizing verbal techniques that help to link the ideas

in a paragraph together. **Writing:** Paragraph writing (specific topics) using suitable cohesive devices; mechanics of writing - punctuation, capital letters. **Grammar and Vocabulary:** Cohesive devices - linkers, sign posts and transition signals; use of articles and zero article; prepositions.

Learning Outcomes

At the end of the module, the learners will be able to

- Comprehend short talks on general topics
- Participate in informal discussions and speak clearly on a specific topic using suitable discourse markers
- Understand the use of cohesive devices for better reading comprehension
- Write well structured paragraphs on specific topics
- Identify basic errors of grammar/ usage and make necessary corrections in short texts

UNIT -3

Lesson: The Death Trap: Saki

Listening: Listening for global comprehension and summarizing what is listened to. **Speaking:** Discussing specific topics in pairs or small groups and reporting what is discussed **Reading:** Reading a text in detail by making basic inferences -recognizing and interpreting specific context clues; strategies to use text clues for comprehension. **Writing:** Summarizing, Paragraph Writing **Grammar and Vocabulary:** Verbs - tenses; subject-verb agreement; direct and indirect speech, reporting verbs for academic purposes.

Learning Outcomes

At the end of the module, the learners will be able to

- Comprehend short talks and summarize the content with clarity and precision
- Participate in informal discussions and report what is discussed
- Infer meanings of unfamiliar words using contextual clues
- Write summaries based on global comprehension of reading/listening texts
- Use correct tense forms, appropriate structures and a range of reporting verbs in speech and writing

UNIT-4

Lesson: Innovation: Muhammad Yunus

Listening: Making predictions while listening to conversations/ transactional dialogues without video; listening with video. **Speaking:** Role plays for practice of conversational English in academic contexts (formal and informal) - asking for and giving information/directions. **Reading:** Studying the use of graphic elements in texts to convey information, reveal trends/patterns/relationships, communicate processes or display complicated data. **Writing:** Letter Writing: Official Letters/Report Writing **Grammar and Vocabulary:** Quantifying expressions - adjectives and adverbs; comparing and contrasting; Voice - Active & Passive Voice

Learning Outcomes

At the end of the module, the learners will be able to

- Infer and predict about content of spoken discourse
- Understand verbal and non-verbal features of communication and hold formal/informal conversations
- Interpret graphic elements used in academic texts
- Produce a coherent paragraph interpreting a figure/graph/chart/table
- Use language appropriate for description and interpretation of graphical elements

UNIT -5

Lesson: Politics and the English Language: George Orwell

Listening: Identifying key terms, understanding concepts and answering a series of relevant questions that test comprehension. Speaking: Formal oral presentations on topics from academic contexts - without the use of PPT slides. Reading: Reading for comprehension. Writing: Writing structured essays on specific topics using suitable claims and evidences. Grammar and Vocabulary: Editing short texts –identifying and correcting common errors in grammar and usage (articles, prepositions, tenses, subject verb agreement)

Learning Outcomes

At the end of the module, the learners will be able to

- Take notes while listening to a talk/lecture and make use of them to answer questions
- Make formal oral presentations using effective strategies
- Comprehend, discuss and respond to academic texts orally and in writing
- Produce a well-organized essay with adequate support and detail
- Edit short texts by correcting common errors

Text Book:

1. Language and Life: A Skills Approach- I Edition 2019, Orient Black Swan

Reference Books:

- 1. Bailey, Stephen. Academic writing: A handbook for international students. Routledge, 2014.
- 2. Chase, Becky Tarver. Pathways: Listening, Speaking and Critical Thinking. Heinley ELT; 2nd Edition, 2018.
- 3. Raymond Murphy's English Grammar in Use Fourth Edition (2012) E-book
- 4. Hewings, Martin. Cambridge Academic English (B2). CUP, 2012.
- 5. Oxford Learners Dictionary, 12th Edition, 2011
- 6. Norman Lewis Word Power Made Easy- The Complete Handbook for Building a Superior Vocabulary (2014)
- 7. Speed Reading with the Right Brain: Learn to Read Ideas Instead of Just Words by David Butler

Course Outcomes

- Retrieve the knowledge of basic grammatical concepts
- Understand the context, topic, and pieces of specific information from social or transactional dialogues spoken by native speakers of English
- Apply grammatical structures to formulate sentences and correct word forms
- Analyze discourse markers to speak clearly on a specific topic in informal discussions
- Evaluate reading/listening texts and to write summaries based on global comprehension of these texts.
- Create a coherent paragraph interpreting a figure/graph/chart/table

Web links

www.englishclub.com www.easyworldofenglish.com www.languageguide.org/english/ www.bbc.co.uk/learningenglish www.eslpod.com/index.html www.myenglishpages.com

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech- CSE -(AI &ML) - II Sem L T P C 3 0 0 3

(20A05101T) PYTHON PROGRAMMING & DATA SCIENCE (CSE, AI & DS,CSE (AI), CSE(IoT), CSE (Data Science), CSE(AI & ML), IT)

Course Objectives

- To learn the fundamentals of Python.
- To discuss the concepts of Functions and Exceptions.
- To familiarize with Python libraries for Data Analysis and Data Visualization.
- To introduce preliminary concepts in Pattern Recognition and Machine learning.
- To provide an overview of Deep Learning and Data Science models.

Unit-I

Introduction to Python: Features of Python, Data types, Operators, Input and output, Control Statements.

Strings: Creating strings and basic operations on strings, string testing methods. Lists, Dictionaries, Tuples.

Learning outcomes:

At the end of this unit, the students will be able to

- List the basic constructs of Python. (L1)
- Apply the conditional execution of the program (L3)
- Design programs for manipulating strings (L6)
- Use the data structure lists, Dictionaries and Tuples (L3)

Unit-II

Functions: Defining a function, Calling a function, returning multiple values from a function, functions are first class objects, formal and actual arguments, positional arguments, recursive functions.

Exceptions: Errors in a Python program, exceptions, exception handling, types of exceptions, the except block, the assert statement, user-defined exceptions.

Learning outcomes:

At the end of this unit, the students will be able to

- Solve the problems by applying the modularity principle. (L3)
- Classify exceptions and explain the ways of handling them. (L4)

Unit-III

Introduction to NumPy, Pandas, Matplotlib.

Exploratory Data Analysis (EDA), Data Science life cycle, Descriptive Statistics, Basic tools (plots, graphs and summary statistics) of EDA, Philosophy of EDA. Data Visualization: Scatter plot, bar chart, histogram, boxplot, heat maps, etc.

Learning outcomes:

At the end of this unit, the students will be able to

- Demonstrate various mathematical operations on arrays using NumPy (L2)
- Analyze and manipulate Data using Pandas (L4)
- Creating static, animated, and interactive visualizations using Matplotlib. (L6)

Unit-IV

Introduction to Pattern Recognition and Machine Learning: Patterns, features, pattern representation, the curse of dimensionality, dimensionality reduction. Classification—linear and non-linear. Bayesian, Perceptron, Nearest neighbor classifier, Logistic regression, Naïve-Bayes, decision trees and random forests; boosting and bagging.Clustering---partitional and hierarchical; k-means clustering. Regression.

Cost functions, training and testing a classifier. Cross-validation, Class-imbalance – ways of handling, Confusion matrix, evaluation metrics.

Learning outcomes:

At the end of this unit, the students will be able to

- Define Patterns and their representation (L1)
- Describe the Classification and Clustering (L2)
- illustrate cost functions and class imbalance (L3)

Unit-V

Introduction to Deep Learning: Multilayer perceptron. Backpropagation. Loss functions. Hyperparameter tuning, Overview of RNN, CNN and LSTM.

Overview of Data Science Models: Applications to text, images, videos, recommender systems, image classification, Social network graphs.

At the end of this unit, the students will be able to

- Describe RNN, CNN and (L2)
- Explain the applications of Data Science (L2)

Textbooks:

- 1. Allen B. Downey, "Think Python", 2nd edition, SPD/O'Reilly, 2016.
- 2. Cathy O'Neil, Rachel Schutt, Doing Data Science, Straight Talk from the Frontline. O'Reilly, 2013.
3. Christopher Bishop, Pattern Recognition and Machine Learning, Springer, 2007.

References:

- 1. Michael Nielsen, Neural Networks and Deep Learning, Determination Press, 2015.
- 2. Francois Chollet, Deep Learning with Python, 1/e, Manning Publications Company, 2017
- 3. EMC2: Data Science and Big Data Analytics, EMC Education Services, EMC 2, Wiley Publication, 2015.
- 4. V. Susheela Devi and M. Narasimha Murty. Pattern Recognition An Introduction. Universities Press (Indian Edition; there is an expensive Springer version of the same)
- 5. Goodfellow and YoshuaBengio and Aaron Courville. Deep Learning. MIT Press. Book available online at https://www.deeplearningbook.org/.
- 6. J. Leskovec, A. Rajaraman, J.D. Ullman. Mining of Massive Datasets. Cambridge University Press. (Indian Edition; Online pdf is available for download)

Course Outcomes:

- 1. Apply the features of Python language in various real applications. (L3)
- 2. Identify the appropriate data structure of Python for solving a problem (L2)
- 3. Demonstrate data analysis, manipulation and visualization of data using Python libraries (L5)
- 4. Enumerate machine learning algorithms. (L1)
- 5. Analyze the various applications of Data Science. (L4)
- 6. Design solutions for real-world problems using Python. (L6)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech- CSE -(AI &ML) – II Sem L T P/D C

1 0 0/2 2

(20A03101T) ENGINEERING DRAWING

(Common to All Branches of Engineering)

Course Objectives:

- Bring awareness that Engineering Drawing is the Language of Engineers.
- Familiarize how industry communicates technical information.
- Teach the practices for accuracy and clarity in presenting the technical information.
- Develop the engineering imagination essential for successful design.

Unit: I

Introduction to Engineering Drawing: Principles of Engineering Drawing and its significance-Conventions in drawing-lettering - BIS conventions.

a)Conic sections including the rectangular hyperbola- general method only,

b) Cycloid, epicycloids and hypocycloid c) Involutes

Learning Outcomes:

At the end of this unit the student will be able to

- Understand the significance of engineering drawing
- Know the conventions used in the engineering drawing
- Identify the curves obtained in different conic sections
- Draw different curves such as cycloid, involute and hyperbola

Unit: II

Projection of points, lines and planes: Projection of points in any quadrant, lines inclined to one or both planes, finding true lengths, angle made by line. Projections of regular plane surfaces.

Learning Outcomes:

At the end of this unit the student will be able to

- Understand the meaning of projection
- Know how to draw the projections of points, lines
- Differentiate between projected length and true length
- Find the true length of the lines

Unit: III

Projections of solids: Projections of regular solids inclined to one or both planes by rotational or auxiliary views method.

Learning Outcomes:

At the end of this unit the student will be able to

- Understand the procedure to draw projection of solids
- Differentiate between rotational method and auxillary view method.
- Draw the projection of solid inclined to one plain
- Draw the projection of solids inclined to both the plains

Unit: IV

Sections of solids: Section planes and sectional view of right regular solids- prism, cylinder, pyramid and cone. True shapes of the sections.

Learning Outcomes:

At the end of this unit the student will be able to

- Understand different sectional views of regular solids
- Obtain the true shapes of the sections of prism
- Draw the sectional views of prism, cylinder, pyramid and cone

Unit: V

Development of surfaces: Development of surfaces of right regular solids-prism, cylinder, pyramid, cone and their sectional parts.

Learning Outcomes:

At the end of this unit the student will be able to

- Understand the meaning of development of surfaces
- Draw the development of regular solids such as prism, cylinder, pyramid and cone
- Obtain the development of sectional parts of regular shapes

Text Books:

- 1. K.L.Narayana & P.Kannaiah, Engineering Drawing, 3/e, Scitech Publishers, Chennai, 2012.
- 2. N.D.Bhatt, Engineering Drawing, 53/e, Charotar Publishers, 2016.

Reference Books:

- 1. Dhanajay A Jolhe, Engineering Drawing, Tata McGraw-Hill, Copy Right, 2009
- 2. Venugopal, Engineering Drawing and Graphics, 3/e, New Age Publishers, 2000
- 3. Shah and Rana, Engineering Drawing, 2/e, Pearson Education, 2009
- 4. K.C.John, Engineering Graphics, 2/e, PHI, 2013
- 5. Basant Agarwal & C.M.Agarwal, Engineering Drawing, Tata McGraw-Hill, Copy Right, 2008.

Course Outcomes:

After completing the course, the student will be able to

- Draw various curves applied in engineering. (12)
- Show projections of solids and sections graphically. (12)
- Draw the development of surfaces of solids. (13)

Additional Sources

Youtube: http-sewor, Carleton.cag, kardos/88403/drawings.html conic sections-online, red woods.edu

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech- CSE -(AI &ML) – II Sem L T P C

(20A03101P) ENGINEERING GRAPHICS LAB

(Common to All Branches of Engineering)

Course Objectives:

- Instruct the utility of drafting & modeling packages in orthographic and isometric drawings.
- Train the usage of 2D and 3D modeling.
- Instruct graphical representation of machine components.

Computer Aided Drafting:

Introduction to AutoCAD: Basic drawing and editing commands: line, circle, rectangle, erase, view, undo, redo, snap, object editing, moving, copying, rotating, scaling, mirroring, layers, templates, polylines, trimming, extending, stretching, fillets, arrays, dimensions.

Dimensioning principles and conventional representations.

Orthographic Projections: Systems of projections, conventions and application to orthographic projections - simple objects.

Isometric Projections: Principles of isometric projection- Isometric scale; Isometric views: lines, planes, simple solids.

Text Books:

- 1. K. Venugopal, V.Prabhu Raja, Engineering Drawing + Auto Cad, New Age International Publishers.
- 2. Kulkarni D.M, AP Rastogi and AK Sarkar, Engineering Graphics with Auto Cad, PHI Learning, Eastern Economy editions.

Reference Books:

- 1. T. Jayapoovan, Engineering Graphics using Auto Cad, Vikas Publishing House
- 2. K.L.Narayana & P.Kannaiah, Engineering Drawing, 3/e, Scitech Publishers, Chennai, 2012.
- 3. Linkan Sagar, BPB Publications, Auto Cad 2018 Training Guide.
- 4. K.C.John, Engineering Graphics, 2/e, PHI, 2013
- 5. Basant Agarwal & C.M.Agarwal, Engineering Drawing, Tata McGraw-Hill, Copy Right, 2008.

Course Outcomes:

After completing the course, the student will be able to

- Use computers as a drafting tool. (L2)
- Draw isometric and orthographic drawings using CAD packages. (L3)

Additional Sources

1. Youtube: http-sewor,Carleton.cag, kardos/88403/drawings.html conic sections-online, red woods.edu

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech- CSE -(AI &ML) – II Sem L T P

0 0 3 1.5

С

(20A52101P) COMMUNICATIVE ENGLISH LAB

(Common to All Branches of Engineering)

Course Objectives

- students will be exposed to a variety of self instructional, learner friendly modes of language learning
- students will learn better pronunciation through stress, intonation and rhythm
- students will be trained to use language effectively to face interviews, group discussions, public speaking
- students will be initiated into greater use of the computer in resume preparation, report writing, format making etc

List of Topics

- 1. Phonetics
- 2. Reading comprehension
- 3. Describing objects/places/persons
- 4. Role Play or Conversational Practice
- 5. JAM
- 6. Etiquettes of Telephonic Communication
- 7. Information Transfer
- 8. Note Making and Note Taking
- 9. E-mail Writing
- 10. Group Discussions-1
- 11. Resume Writing
- **12.** Debates
- 13. Oral Presentations
- 14. Poster Presentation
- 15. Interviews Skills-1

Suggested Software

Orel, Walden Infotech, Young India Films

Reference Books

- 1. Bailey, Stephen. Academic writing: A handbook for international students. Routledge, 2014.
- 2. Chase, Becky Tarver. Pathways: Listening, Speaking and Critical Thinking. Heinley ELT; 2nd Edition, 2018.
- 3. Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Educational.
- 4. Hewings, Martin. Cambridge Academic English (B2). CUP, 2012.
- 5. A Textbook of English Phonetics for Indian Students by T.Balasubramanyam

Web Links

www.esl-lab.com www.englishmedialab.com www.englishinteractive.net

Course Outcomes

After completing the course, the student will be able to

- Listening and repeating the sounds of English Language
- Understand the different aspects of the English language
- proficiency with emphasis on LSRW skills
- Apply communication skills through various language learning activities
- Analyze the English speech sounds, stress, rhythm, intonation and syllable
- Division for better listening and speaking comprehension.
- Evaluate and exhibit acceptable etiquette essential in social and professional settings
- Create awareness on mother tongue influence and neutralize it in order to
- Improve fluency in spoken English.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech- CSE -(AI &ML) – II Sem L T P C

0 0 3 1.5

(20A56201P) APPLIED PHYSICS LAB

(ECE, EEE, CSE, AI & DS,CSE (AI), CSE(IoT), CSE (Data Science), CSE(AI & ML), IT)

Course Objectives:

- Understands the concepts of interference, diffraction and their applications.
- Understand the role of optical fiber parameters in communication.
- Recognize the importance of energy gap in the study of conductivity and Hall Effect in a semiconductor.
- Illustrates the magnetic and dielectric materials applications.
- Apply the principles of semiconductors in various electronic devices.

Note: In the following list, out of 15 experiments, any 12 experiments (minimum 10) must be performed in a semester

List of Applied Physics Experiments

- 1. Determine the thickness of the wire using wedge shape method
- 2. Determination of the radius of curvature of the lens by Newton's ring method
- 3. Determination of wavelength by plane diffraction grating method
- 4. Determination of dispersive power of prism.
- 5. Determination of wavelength of LASER light using diffraction grating.
- 6. Determination of particle size using LASER.
- 7. To determine the numerical aperture of a given optical fiber and hence to find its acceptance angle
- 8. Determination of dielectric constant by charging and discharging method.
- 9. Magnetic field along the axis of a circular coil carrying current –Stewart Gee's method.
- 10. Measurement of magnetic susceptibility by Gouy's method
- 11. Study the variation of B versus H by magnetizing the magnetic material (B-H curve)
- 12. To determine the resistivity of semiconductor by Four probe method
- 13. To determine the energy gap of a semiconductor
- 14. Determination of Hall voltage and Hall coefficient of a given semiconductor using Hall Effect.
- 15. Measurement of resistance with varying temperature.

Course Outcomes:

At the end of the course, the student will be able to

- Operate optical instruments like microscope and spectrometer (L2)
- Determine thickness of a hair/paper with the concept of interference (L2)
- Estimate the wavelength of different colors using diffraction grating and resolving power (L2)
- Plot the intensity of the magnetic field of circular coil carrying current with distance (L3)
- Evaluate the acceptance angle of an optical fiber and numerical aperture (L3)
- Determine the resistivity of the given semiconductor using four probe method (L3)
- Identify the type of semiconductor i.e., n-type or p-type using hall effect (L3)
- Calculate the band gap of a given semiconductor (L3)

References

- 1. S. Balasubramanian, M.N. Srinivasan "A Text book of Practical Physics"- S Chand Publishers, 2017.
- 2. http://vlab.amrita.edu/index.php -Virtual Labs, Amrita University

AWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech- CSE -(AI &ML) – II Sem L T P C

0 0 3 1.5

(20A05101P) PYTHON PROGRAMMING & DATA SCIENCE LAB (CSE, AI & DS,CSE (AI), CSE(IoT), CSE (Data Science), CSE(AI & ML), IT)

Course Objectives:

- To train the students in solving computational problems
- To elucidate solving mathematical problems using Python programming language
- To understand the fundamentals of Python programming concepts and its applications.
- Practical understanding of building different types of models and their evaluation

List of Topics

- 1. Write a program to demonstrate a) Different numeric data types and b) To perform different Arithmetic Operations on numbers in Python.
- 2. Write a program to create, append, and remove lists in Python.
- 3. Write a program to demonstrate working with tuples in Python.
- 4. Write a program to demonstrate working with dictionaries in Python.
- 5. Write a program to demonstrate a) arrays b) array indexing such as slicing, integer array indexing and Boolean array indexing along with their basic operations in NumPy.
- 6. Write a program to compute summary statistics such as mean, median, mode, standard deviation and variance of the given different types of data.
- 7. Write a script named copyfile.py. This script should prompt the user for the names of two text files. The contents of the first file should be the input that to be written to the second file.
- 8. Write a program to demonstrate Regression analysis with residual plots on a given data set.
- 9. Write a program to demonstrate the working of the decision tree-based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.
- 10. Write a program to implement the Naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.
- 11. Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions using Java/Python ML library classes.
- 12. Write a program to implement k-Means clustering algorithm to cluster the set of data stored in .CSV file. Compare the results of various "k" values for the quality of clustering.
- 13. Write a program to build Artificial Neural Network and test the same using appropriate data sets.

Textbooks:

- 1. Francois Chollet, Deep Learning with Python, 1/e, Manning Publications Company, 2017
- Peter Wentworth, Jeffrey Elkner, Allen B. Downey and Chris Meyers, "How to Think Like a Computer Scientist: Learning with Python 3", 3rd edition, Available at <u>http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/thinkcspy3.pdf</u>
- 3. Paul Barry, "Head First Python a Brain Friendly Guide" 2nd Edition, O'Reilly, 2016
- 4. Dainel Y.Chen "Pandas for Everyone Python Data Analysis" Pearson Education, 2019

Course Outcomes:

At the end of the course, the student will be able to

- Illustrate the use of various data structures. (L3)
- Analyze and manipulate Data using Pandas (L4)
- Creating static, animated, and interactive visualizations using Matplotlib. (L6)
- Understand the implementation procedures for the machine learning algorithms. (L2)
- Apply appropriate data sets to the Machine Learning algorithms (L3)
- Identify and apply Machine Learning algorithms to solve real-world problems (L1)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech- CSE -(AI &ML) II-I Sem 2 0 0 3

20A54304Discrete Mathematics & Graph theory

(Common to CSE, IT, CSE(DS), CSE (IoT), CSE (AI), CSE (AI & ML) and AI & DS)

Pre-requisite Basic Mathematics

Course Objectives:

Introduce the concepts of mathematical logic and gain knowledge in sets, relations and functions and Solve problems using counting techniques and combinatorics and to introduce generating functions and recurrence relations. Use Graph Theory for solving real world problems

Course Outcomes (CO):

After completion of the course, students will be able to

- Apply mathematical logic to solve problems.
- Understand the concepts and perform the operations related to sets, relations and functions.
- Gain the conceptual background needed and identify structures of algebraic nature.
- Apply basic counting techniques to solve combinatorial problems.
- Formulate problems and solve recurrence relations.
- Apply Graph Theory in solving computer science problems

UNIT - I Mathematical Logic

Introduction, Statements and Notation, Connectives, Well-formed formulas, Tautology, Duality law, Equivalence, Implication, Normal Forms, Functionally complete set of connectives, Inference Theory of Statement Calculus, Predicate Calculus, Inference theory of Predicate Calculus.

UNIT - II Set theory

Basic Concepts of Set Theory, Relations and Ordering, The Principle of Inclusion- Exclusion, Pigeon hole principle and its application, Functions composition of functions, Inverse Functions, Recursive Functions, Lattices and its properties. Algebraic structures: Algebraic systems-Examples and General Properties, Semi groups and Monoids, groups, sub groups, homomorphism, Isomorphism.

UNIT - III Elementary Combinatorics 8 Hrs

Basics of Counting, Combinations and Permutations, Enumeration of Combinations and Permutations, Enumerating Combinations and Permutations with Repetitions, Enumerating Permutations with Constrained Repetitions, Binomial Coefficients, The Binomial and Multinomial Theorems.

UNIT - IV Recurrence Relations

Generating Functions of Sequences, Calculating Coefficients of Generating Functions, Recurrence relations, Solving Recurrence Relations by Substitution and Generating functions, The Method of Characteristic roots, Solutions of Inhomogeneous Recurrence Relations.

8 Hrs

9 Hrs

...

9 Hrs

UNIT - V Graphs

9 Hrs

Basic Concepts, Isomorphism and Subgraphs, Trees and their Properties, Spanning Trees, Directed Trees, Binary Trees, Planar Graphs, Euler's Formula, Multigraphs and Euler Circuits, Hamiltonian Graphs, Chromatic Numbers, The Four Color Problem

Textbooks:

- 1. Joe L. Mott, Abraham Kandel and Theodore P. Baker, Discrete Mathematics for Computer Scientists & Mathematicians, 2nd Edition, Pearson Education.
- 2. J.P. Tremblay and R. Manohar, Discrete Mathematical Structures with Applications to Computer Science, Tata McGraw Hill, 2002.

Reference Books:

- 1. Kenneth H. Rosen, Discrete Mathematics and its Applications with Combinatorics and Graph Theory, 7th Edition, McGraw Hill Education (India) Private Limited.
- 2. Graph Theory with Applications to Engineering and Computer Science byNarsinghDeo.

Online Learning Resources:

http://www.cs.yale.edu/homes/aspnes/classes/202/notes.pdf

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech- CSE -(AI &ML) II-I Sem L T P C

3 0 0 3

20A04304T DIGITAL ELECTRONICS & MICROPROCESSORS

Pre-requisite

Basic Electronics

Course Objectives:

- To understand all the concepts of Logic Gates and Boolean Functions.
- To learn about Combinational Logic and Sequential Logic Circuits.
- To design logic circuits using Programmable Logic Devices.
- To understand basics of 8086 Microprocessor and 8051 Microcontroller.
- To understand architecture of 8086 Microprocessor and 8051 Microcontroller.
- To learn Assembly Language Programming of 8086 and 8051.

Course Outcomes (CO):

After Completion of this course, the student will be able to:

- Design any Logic circuit using basic concepts of Boolean Algebra.
- Design any Logic circuit using basic concepts of PLDs.
- Design and develop any application using 8086 Microprocessor.
- Design and develop any application using 8051 Microcontroller.

UNIT - I Number Systems & Code Conversion

Number Systems & Code conversion, Boolean Algebra & Logic Gates, Truth Tables, Universal Gates, Simplification of Boolean functions, SOP and POS methods – Simplification of Boolean functions using K-maps, Signed and Unsigned Binary Numbers.

UNIT - II Combinational Circuits

Combinational Logic Circuits: Adders &Subtractors, Multiplexers, Demultiplexers, Encoders, Decoders, Programmable Logic Devices.

UNIT - III Sequential Circuits

Sequential Logic Circuits: RS, Clocked RS, D, JK, Master Slave JK, T Flip-Flops, Shift Registers, Types of Shift Registers, Counters, Ripple Counter, Synchronous Counters, Asynchronous Counters, Up-Down Counter.

UNIT - IV Microprocessors - I

8085 microprocessor Review (brief details only), 8086 microprocessor, Functional Diagram, register organization 8086, Flag register of 8086 and its functions, Addressing modes of 8086, Pin diagram of 8086, Minimum mode & Maximum mode operation of 8086, Interrupts in 8086.

UNIT – V Microprocessors - II

Instruction set of 8086, Assembler directives, Procedures and Macros, Simple programs involving arithmetic, logical, branch instructions, Ascending, Descending and Block move programs, String Manipulation Instructions. Overview of 8051 microcontroller, Architecture, I/O ports and Memory organization, addressing modes and instruction set of 8051(Brief details only), Simple Programs.

Text Books:

- 1.M. Morris Mano, Michael D. Ciletti, Digital Design, Pearson Education, 5th Edition, 2013
- 2. Anil K. Maini, Digital Electronics: Principles, Devices and Applications, John Wiley & Sons, Ltd., 2007.
- 3. N. Senthil Kumar, M. Saravanan, S. Jeevanathan, Microprocessor and

Microcontrollers, Oxford Publishers, 2010.

4. Advanced microprocessors and peripherals-A.K Ray and K.M.Bhurchandani, TMH, 2nd edition, 2006.

Reference Books:

- 1. Thomas L. Floyd, Digital Fundamentals A Systems Approach, Pearson, 2013.
- 2. Charles H. Roth, Fundamentals of Logic Design, Cengage Learning, 5th, Edition, 2004.
- 3. D.V.Hall, Microprocessors and Interfacing. TMGH, 2nd edition, 2006.
- 4. Kenneth.J.Ayala, The 8051 microcontroller, 3rd edition, Cengage Learning, 2010.

Online Learning Resources:

NPTEL, SWAYAM

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech- CSE -(AI &ML) II-I Sem 2 0 0 3

20A05301T Advanced Data Structures & Algorithms

(Common to CSE, IT, CSE(DS), CSE (IoT), CSE (AI), CSE (AI & ML) and AI & DS)

Pre-requisite Data Structures

Course Objectives:

- Learn asymptotic notations, and analyze the performance of different algorithms.
- Understand and implement various data structures.
- Learn and implement greedy, divide and conquer, dynamic programming and backtracking algorithms using relevant data structures.
- Understand non-deterministic algorithms, polynomial and non-polynomial problems.

Course Outcomes (CO):

After completion of the course, students will be able to

- Analyze the complexity of algorithms and apply asymptotic notations.
- Apply non-linear data structures and their operations.
- Understand and apply greedy, divide and conquer algorithms.
- Develop dynamic programming algorithms for various real-time applications.
- Illustrate Backtracking algorithms for various applications.

UNIT - I Introduction to Algorithms

Introduction to Algorithms:

Algorithms, Pseudocode for expressing algorithms, Performance Analysis-Space complexity, Time complexity, Asymptotic Notation- Big oh, Omega, Theta notation and Little oh notation, Polynomial Vs Exponential Algorithms, Average, Best and Worst Case Complexities, Analysing Recursive Programs.

UNIT - II Trees Part-I

Trees Part-I

Binary Search Trees: Definition and Operations, AVL Trees: Definition and Operations, Applications.

B Trees: Definition and Operations.

UNIT - III Trees Part-II

Trees Part-II

Red-Black Trees, Splay Trees, Applications.

Hash Tables: Introduction, Hash Structure, Hash functions, Linear Open Addressing, Chaining and Applications.

9 Hrs

8 Hrs

8 Hrs

9 Hrs

UNIT - IV **Divide and conquer, Greedy method**

Divide and conquer: General method, applications-Binary search, Finding Maximum and minimum, Quick sort, Merge sort, Strassen's matrix multiplication.

Greedy method: General method, applications-Job sequencing with deadlines, knapsack problem, Minimum cost spanning trees, Single source shortest path problem.

UNIT - V Dynamic Programming & Backtracking 9 Hrs

Dynamic Programming: General method, applications- 0/1 knapsack problem, All pairs shortest path problem, Travelling salesperson problem, Reliability design.

Backtracking: General method, applications-n-queen problem, sum of subsets problem, graph coloring, Hamiltonian cycles.

Introduction to NP-Hard and NP-Complete problems: Basic Concepts.

Textbooks:

1. Data Structures and algorithms: Concepts, Techniques and Applications, G A V Pai.

2. Fundamentals of Computer Algorithms, Ellis Horowitz, Sartaj Sahni and Rajasekharam, Galgotia publications Pvt. Ltd.

Reference Books:

1. Classic Data Structures by D. Samanta, 2005, PHI

2. Design and Analysis of Computer Algorithms by Aho, Hopcraft, Ullman 1998, PEA.

3. Introduction to the Design and Analysis of Algorithms by Goodman, Hedetniemi, TMG.

Online Learning Resources:

https://www.tutorialspoint.com/advanced_data_structures/index.asp

http://peterindia.net/Algorithms.html

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech- CSE -(AI &ML) II-I Sem LTPC

3 0 0 3

20A05302T Object Oriented Programming Through Java

(Common to CSE, IT, CSE (AI), CSE (AI & ML) and AI& DS)

Fundamental Programming

Course Objectives:

- To understand object oriented concepts and problem solving techniques
- To obtain knowledge about the principles of inheritance and polymorphism
- To implement the concept of packages, interfaces, exception handling and concurrency mechanism.
- To design the GUIs using applets and swing controls.
- To understand the Java Database Connectivity Architecture

Course Outcomes (CO):

After completion of the course, students will be able to

- Solve real-world problems using OOP techniques.
- Apply code reusability through inheritance, packages and interfaces
- Solve problems using java collection framework and I/O classes.
- Develop applications by using parallel streams for better performance.
- Develop applets for web applications.
- Build GUIs and handle events generated by user interactions.
- Use the JDBC API to access the database

UNIT - I Introduction

Introduction: Introduction to Object Oriented Programming, The History and Evolution of Java, Introduction to Classes, Objects, Methods, Constructors, this keyword, Garbage Collection, Data Types, Variables, Type Conversion and Casting, Arrays, Operators, Control Statements, Method Overloading, Constructor Overloading, Parameter Passing, Recursion, String Class and String handling methods.

UNIT - II **Inheritance, Packages, Interfaces**

Inheritance: Basics, Using Super, Creating Multilevel hierarchy, Method overriding, Dynamic Method Dispatch, Using Abstract classes, Using final with inheritance, Object class,

Packages: Basics, Finding packages and CLASSPATH, Access Protection, Importing packages.

Interfaces: Definition, Implementing Interfaces, Extending Interfaces, Nested Interfaces, Applying Interfaces, Variables in Interfaces.

UNIT - III Exception handling, Stream based I/O (java.io) 9Hrs

Exception handling - Fundamentals, Exception types, Uncaught exceptions, using try and catch, multiple catch clauses, nested try statements, throw, throws and finally, built-in exceptions, creating own exception

8Hrs

9Hrs

subclasses.

Stream based I/O (java.io) – The Stream classes-Byte streams and Character streams, Reading console Input and Writing Console Output, File class, Reading and Writing Files, Random access file operations, The Console class, Serialization, Enumerations, Autoboxing, Generics.

UNIT - IV Multithreading, The Collections Framework (java.util) 8Hrs

Multithreading: The Java thread model, Creating threads, Thread priorities, Synchronizing threads, Interthread communication.

The Collections Framework (java.util): Collections overview, Collection Interfaces, The Collectionclasses- Array List, Linked List, Hash Set, Tree Set, Priority Queue, Array Deque. Hashtable, Properties, Stack, Vector, String Tokenizer, Bit Set, Date, Calendar, Random, Formatter, Scanner.

UNIT - V Applet, GUI Programming with Swings, Accessing Databases 8Hrs with JDBC

Applet: Basics, Architecture, Applet Skeleton, requesting repainting, using the status window, passing parameters to applets

GUI Programming with Swings – The origin and design philosophy of swing, components and containers, layout managers, event handling, using a push button, jtextfield, jlabel and image icon, the swing buttons, jtext field, jscrollpane, jlist, jcombobox, trees, jtable, An overview of jmenubar, jmenu and jmenuitem, creating a main menu, showmessagedialog, showconfirmdialog, showinputdialog, showoptiondialog, jdialog, create a modeless dialog.

Accessing Databases with JDBC:

Types of Drivers, JDBC Architecture, JDBC classes and Interfaces, Basic steps in developing JDBC applications, Creating a new database and table with JDBC.

Textbooks:

- 1. Java The complete reference, 9th edition, Herbert Schildt, McGraw Hill Education (India) Pvt. Ltd.
- 2. Java How to Program, 10th Edition, Paul Dietel, Harvey Dietel, Pearson Education.

Reference Books:

- 1. Understanding Object-Oriented Programming with Java, updated edition, T. Budd, Pearson Education.
- 2. Core Java Volume 1 Fundamentals, Cay S. Horstmann, Pearson Education.

3. Java Programming for core and advanced learners, Sagayaraj, Dennis, Karthik andGajalakshmi, University Press

- 4. Introduction to Java programming, Y. Daniel Liang, Pearson Education.
- 5. Object Oriented Programming through Java, P. Radha Krishna, University Press.
- 6. Programming in Java, S. Malhotra, S. Chaudhary, 2nd edition, Oxford Univ. Press.
- 7. Java Programming and Object-oriented Application Development, R.A. Johnson,

Cengage Learning.

Online Learning Resources:

https://www.w3schools.com/java/java_oop.asp

http://peterindia.net/JavaFiles.html

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech- CSE -(AI &ML) II-I Sem L T P C

3 0 0 3

20A05303 Computer Organization

(Common to CSE, IT, CSE(DS), CSE (IoT), CSE (AI), CSE (AI & ML) and AI & DS)

Pre-requisite Digital Electronics

Course Objectives:

- To learn the fundamentals of computer organization and its relevance to classical and modern problems of computer design
- To understand the structure and behavior of various functional modules of a computer.
- To learn the techniques that computers use to communicate with I/O devices
- To acquire the concept of pipelining and exploitation of processing speed.
- To learn the basic characteristics of multiprocessors

Course Outcomes (CO):

After completion of the course, students will be able to

- Understand computer architecture concepts related to the design of modern processors, memories and I/Os
- Identify the hardware requirements for cache memory and virtual memory
- Design algorithms to exploit pipelining and multiprocessors
- Understand the importance and trade-offs of different types of memories.
- Identify pipeline hazards and possible solutions to those hazards

UNIT - I Basic Structure of Computer, Machine Instructions and 8Hrs Programs

Basic Structure of Computer: Computer Types, Functional Units, Basic operational Concepts, Bus Structure, Software, Performance, Multiprocessors and Multicomputer.

Machine Instructions and Programs: Numbers, Arithmetic Operations and Programs, Instructions and Instruction Sequencing, Addressing Modes, Basic Input/output Operations, Stacks and Queues, Subroutines, Additional Instructions.

UNIT - II Arithmetic, Basic Processing Unit

Arithmetic: Addition and Subtraction of Signed Numbers, Design of Fast Adders, Multiplication of Positive Numbers, Signed-operand Multiplication, Fast Multiplication, Integer Division, Floating-Point Numbers and Operations.

Basic Processing Unit: Fundamental Concepts, Execution of a Complete Instruction, Multiple-Bus Organization, Hardwired Control, and Multi programmed Control.

UNIT - III The Memory System

The Memory System: Basic Concepts, Semiconductor RAM Memories, Read-Only Memories, Speed, Size and Cost, Cache Memories, Performance Considerations, Virtual Memories, Memory Management Requirements, Secondary Storage.

9Hrs

8Hrs

UNIT - IV Input/Output Organization

Input/Output Organization: Accessing I/O Devices, Interrupts, Processor Examples, Direct Memory Access, Buses, Interface Circuits, Standard I/O Interfaces.

UNIT - V Pipelining, Large Computer Systems 9 Hrs

Pipelining: Basic Concepts, Data Hazards, Instruction Hazards, Influence on Instruction Sets. **Large Computer Systems:** Forms of Parallel Processing, Array Processors, The Structure of General-Purpose multiprocessors, Interconnection Networks.

Textbooks:

1. Carl Hamacher, ZvonkoVranesic, SafwatZaky, "Computer Organization", 5th Edition, McGraw Hill Education, 2013.

Reference Books:

- 1. M.Morris Mano, "Computer System Architecture", 3rd Edition, Pearson Education.
- 2. Themes and Variations, Alan Clements, "Computer Organization and Architecture", CENGAGE Learning.
- 3. SmrutiRanjanSarangi, "Computer Organization and Architecture", McGraw Hill Education.
- 4. John P.Hayes, "Computer Architecture and Organization", McGraw Hill Education

Online Learning Resources:

https://nptel.ac.in/courses/106/103/106103068/

8Hrs

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech- CSE -(AI &ML) II-I Sem L T P C

0 0 3 1.5

20A04304P DIGITAL ELECTRONICS & MICROPROCESSORS LAB

Basic Electronics Engineering,

Course Objectives:

- To understand all the concepts of Logic Gates and Boolean Functions.
- To learn about Combinational Logic and Sequential Logic Circuits.
- To design logic circuits using Programmable Logic Devices.
- To understand basics of 8086 Microprocessor and 8051 Microcontroller.
- To understand architecture of 8086 Microprocessor and 8051 Microcontroller.
- To learn Assembly Language Programming of 8086 and 8051.

Course Outcomes (CO):

After Completion of this course, the student will be able to:

- Design any Logic circuit using basic concepts of Boolean Algebra.
- Design any Logic circuit using basic concepts of PLDs.
- Design and develop any application using 8086 Microprocessor.
- Design and develop any application using 8051 Microcontroller.

List of Experiments:

Note: Minimum of 12 (6+6) experiments shall be conducted from both the sections

given below:

DIGITAL ELECTRONICS:

1. Verification of Truth Table for AND, OR, NOT, NAND, NOR and EX-OR gates.

2. Realisation of NOT, AND, OR, EX-OR gates with only NAND and only NOR gates.

- 3. Karnaughmap Reduction and Logic Circuit Implementation.
- 4. Verification of DeMorgan's Laws.
- 5. Implementation of Half-Adder and Half-Subtractor.
- 6. Implementation of Full-Adder and Full-Subtractor.
- 7. Four Bit Binary Adder
- 8. Four Bit Binary Subtractor using 1's and 2's Complement.

MICROPROCESSORS (8086 Assembly Language Programming)

- 1. 8 Bit Addition and Subtraction.
- 2. 16 Bit Addition.
- 3. BCD Addition.
- 4. BCD Subtraction.
- 5. 8 Bit Multiplication.
- 6. 8 Bit Division.
- 7. Searching for an Element in an Array.
- 8. Sorting in Ascending and Descending Orders.
- 9. Finding Largest and Smallest Elements from an Array.

10. Block Move

Text Books:

1.M. Morris Mano, Michael D. Ciletti, Digital Design, Pearson Education, 5th Edition,

2013.

- 2. Anil K. Maini, Digital Electronics: Principles, Devices and Applications, John Wiley & Sons, Ltd., 2007.
- 3. N. Senthil Kumar, M. Saravanan, S. Jeevanathan, Microprocessor and

Microcontrollers, Oxford Publishers, 2010.

4. Advanced microprocessors and peripherals-A.K ray and K.M.Bhurchandani, TMH, 2nd edition, 2006.

Reference Books:

- 1. Thomas L. Floyd, Digital Fundamentals A Systems Approach, Pearson, 2013.
- 2. Charles H. Roth, Fundamentals of Logic Design, Cengage Learning, 5th, Edition, 2004.
- 3. D.V.Hall, Microprocessors and Interfacing. TMGH, 2nd edition, 2006.
- 4. Kenneth. J. Ayala, The 8051 microcontroller, 3rd edition, Cengage Learning, 2010.

Online Learning Resources/Virtual Labs:

https://www.vlab.co.in/

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech- CSE -(AI &ML) II-I Sem L T P C

0 0 3 1.5

20A05301P Advanced Data Structures and Algorithms Lab

(Common to CSE, IT, CSE(DS), CSE (IoT), CSE (AI), CSE (AI & ML) and AI & DS)

Pre-requisite Basics of Data Structures

Course Objectives:

- Learn data structures for various applications.
- Implement different operations of data structures by optimizing the performance.
- Develop applications using Greedy, Divide and Conquer, dynamic programming.
- Implement applications for backtracking algorithms using relevant data structures.

Course Outcomes (CO):

After completion of the course, students will be able to

- Understand and apply data structure operations.
- Understand and apply non-linear data structure operations.
- Apply Greedy, divide and conquer algorithms.
- Develop dynamic programming algorithms for various real-time applications.
- Illustrate and apply backtracking algorithms, further able to understand non-deterministic algorithms.

List of Experiments:

1. Write a program to implement the following operations on Binary Search Tree:

a) Insert b) Delete c) Search d) Display

- 2. Write a program to perform a Binary Search for a given set of integer values.
- 3. Write a program to implement Splay trees.
- 4. Write a program to implement Merge sort for the given list of integer values.
- 5. Write a program to implement Quicksort for the given list of integer values.
- 6. Write a program to find the solution for the knapsack problem using the greedy method.
- 7. Write a program to find minimum cost spanning tree using Prim's algorithm
- 8. Write a program to find minimum cost spanning tree using Kruskal's algorithm
- 9. Write a program to find a single source shortest path for a given graph.
- 10. Write a program to find the solution for job sequencing with deadlines problems.

11. Write a program to find the solution for a 0-1 knapsack problem using dynamic programming.

12. Write a program to solve Sum of subsets problem for a given set of distinct numbers using backtracking.

13. Implement N Queen's problem using Back Tracking.

References:

- 1. Y Daniel Liang, "Introduction to Programming using Python", Pearson.
- 2. Benjamin Baka, David Julian, "Python Data Structures and Algorithms", Packt Publishers, 2017.
- 3. Rance D. Necaise, "Data Structures and Algorithms using Python", Wiley Student Edition.

Online Learning Resources/Virtual Labs:

http://cse01-iiith.vlabs.ac.in/

http://peterindia.net/Algorithms.html

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech- CSE -(AI &ML) II-I Sem L T P C

0 0 3 1.5

20A05302P Object Oriented Programming Through Java Lab

(Common to CSE, IT, CSE (AI), CSE (AI & ML) and AI& DS)

Pre-requisite Fundamental Programming

Course Objectives:

- To introduce the concepts of Java.
- To Practice object-oriented programs and build java applications.
- To implement java programs for establishing interfaces.
- To implement sample programs for developing reusable software components.
- To establish database connectivity in java and implement GUI applications.

Course Outcomes (CO):

After completion of the course, students will be able to

- Recognize the Java programming environment.
- Develop efficient programs using multithreading.
- Design reliable programs using Java exception handling features.
- Extend the programming functionality supported by Java.
- Select appropriate programming constructs to solve a problem.

List of Experiments:

Week-1

a. Installation of Java software, study of any Integrated development environment, Use Eclipse or Netbeans platform and acquaint with the various menus. Create a test project, add a test class and run it.

See how you can use auto suggestions, auto fill. Try code formatter and code refactoring like renaming variables, methods and classes. Try debug step by step with java program to find prime numbers between 1 to n.

b. Write a Java program that prints all real solutions to the quadratic equation $ax^2+bx+c=0$. Read in a, b, c and use the quadratic formula.

c. Develop a Java application to generate Electricity bills. Create a class with the following members: Consumer no., consumer name, previous month reading, current month reading, type of EB connection (i.e domestic or commercial). Commute the bill amount using the following tariff.

If the type of the EB connection is domestic, calculate the amount to be paid as follows:

- First 100 units Rs. 1 per unit
- 101-200 units Rs. 2.50 per unit
- 201 -500 units Rs. 4 per unit
- > 501 units Rs. 6 per unit

If the type of the EB connection is commercial, calculate the amount to be paid as follows:

- First 100 units Rs. 2 per unit
- 101-200 units Rs. 4.50 per unit
- 201 -500 units Rs. 6 per unit

• > 501 units - Rs. 7 per unit

d. Write a Java program to multiply two given matrices.

Week-2

a. Write Java program on use of inheritance, preventing inheritance using final, abstract classes.

b. Write Java program on dynamic binding, differentiating method overloading and overriding.

c. Develop a java application to implement currency converter (Dollar to INR, EURO to INR, Yen) using

Interfaces.

Week-3

a. Write Java program that inputs 5 numbers, each between 10 and 100 inclusive. As each number is read, display it only if it's not a duplicate of any number already read display the complete set of unique values input after the user enters each new value.

b. Write a Java Program to create an abstract class named Shape that contains two integers and an empty method named print Area(). Provide three classes named Rectangle, Triangle and Circle such that each one of the classes extends the class Shape. Each one of the classes contains only the method print Area () that prints the area of the given shape.

c. Write a Java program to read the time intervals (HH:MM) and to compare system time if the system Time between your time intervals print correct time and exit else try again to repute the same thing. By using StringToknizer class.

Week-4

a. Write a Java program to implement user defined exception handling.

b. Write java program that inputs 5 numbers, each between 10 and 100 inclusive. As each number is read display it only if it's not a duplicate of any number already read. Display the complete set of unique values input after the user enters each new value.

Week-5

a. Write a Java program that creates a user interface to perform integer division. The user enters two numbers in the text fields, Num1 and Num2. The division of Num1 and Num2 is displayed in the Result field when the Divide button is clicked. If Num1 and Num2 were not integers, the program would throw a Number Format Exception. If Num2 were zero, the program would throw an Arithmetic Exception Display the exception in a message dialog box.

b. Write a Java program that creates three threads. First thread displays —Good Morning every one second, the second thread displays —Hello every two seconds and the third thread displays —Welcome every three seconds.

Week-6

a. Write a java program to split a given text file into n parts. Name each part as the name of the original file followed by .part where n is the sequence number of the part file.

b. Write a Java program that reads a file name from the user, displays information about whether the file exists, whether the file is readable, or writable, the type of file and the length of the file

in bytes.

Week-7

a. Write a java program that displays the number of characters, lines and words in a text file.

b. Write a java program that reads a file and displays the file on the screen with line number before each line.

Week-8

a. Write a Java program that correctly implements the producer-consumer problem using the concept of inter thread communication.

b. Develop a Java application for stack operation using Buttons and JOptionPane input and Message dialog box.

c. Develop a Java application to perform Addition, Division, Multiplication and subtraction using the JOptionPane dialog Box and Textfields.

Week-9

a. Develop a Java application for the blinking eyes and mouth should open while blinking.

b. Develop a Java application that simulates a traffic light. The program lets the user select one of the three lights: Red, Yellow or Green with radio buttons. On selecting a button an appropriate message with —STOPI or —READYI or IGOI should appear above the buttons in the selected color. Initially, there is no message shown.

Week-10

a. Develop a Java application to implement the opening of a door while opening man should present before hut and closing man should disappear.

b. Develop a Java application by using JtextField to read decimal values and converting a decimal number into a binary number then print the binary value in another JtextField.

Week-11

a. Develop a Java application that handles all mouse events and shows the event name at the center of the window when a mouse event is fired. Use adapter classes.

b. Develop a Java application to demonstrate the key event handlers.

Week-12

a. Develop a Java application to find the maximum value from the given type of elements using a generic function.

b. Develop a Java application that works as a simple calculator. Use a grid layout to arrange buttons for the digits and for the +, -, *, % operations. Add a text field to display the result.

c . Develop a Java application for handling mouse events.

Week-13

a. Develop a Java application to establish a JDBC connection, create a table student with properties name, register number, mark1, mark2, mark3. Insert the values into the table by using java and display the information of the students at front end.

References:

1. P. J. Deitel, H. M. Deitel, "Java for Programmers", Pearson Education, PHI, 4th Edition, 2007.

2. P. Radha Krishna, "Object Oriented Programming through Java", Universities Press, 2nd Edition, 2007

3. Bruce Eckel, "Thinking in Java", Pearson Education, 4th Edition, 2006.

4. Sachin Malhotra, Saurabh Chaudhary, "Programming in Java", Oxford University Press, 5th

Edition, 2010. Online Learning Resources/Virtual Labs: <u>https://java-iitd.vlabs.ac.in/</u> <u>http://peterindia.net/JavaFiles.html</u>

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech CSE (AI & ML) – II-I Sem L T P C 3 0 0 3

(20A52201) UNIVERSAL HUMAN VALUES (Common to all branches)

Course Objective:

The objective of the course is four fold:

- Development of a holistic perspective based on self-exploration about themselves (human being), family, society and nature/existence.
- Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence
- Strengthening of self-reflection.
- Development of commitment and courage to act.

COURSE TOPICS:

The course has 28 lectures and 14 practice sessions in 5 modules:

Unit 1:

Course Introduction - Need, Basic Guidelines, Content and Process for Value Education

- Purpose and motivation for the course, recapitulation from Universal Human Values-I
- Self-Exploration–what is it? Its content and process; 'Natural Acceptance' and Experiential Validation- as the process for self-exploration
- Continuous Happiness and Prosperity- A look at basic Human Aspirations
- Right understanding, Relationship and Physical Facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority
- Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario
- Method to fulfil the above human aspirations: understanding and living in harmony at various levels.

Include practice sessions to discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and co-existence) rather than as arbitrariness in choice based on liking-disliking

Unit 2:

Understanding Harmony in the Human Being - Harmony in Myself!

- Understanding human being as a co-existence of the sentient 'I' and the material 'Body'
- Understanding the needs of Self ('I') and 'Body' happiness and physical facility
- Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer)
- Understanding the characteristics and activities of 'I' and harmony in 'I'
- Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail

• Programs to ensure Sanyam and Health.

Include practice sessions to discuss the role others have played in making material goods available to me. Identifying from one's own life. Differentiate between prosperity and accumulation. Discuss program for ensuring health vs dealing with disease

Unit 3:

Understanding Harmony in the Family and Society- Harmony in Human-Human Relationship

- Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect as the foundational values of relationship
- Understanding the meaning of Trust; Difference between intention and competence
- Understanding the meaning of Respect, Difference between respect and differentiation; the other salient values in relationship
- Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals
- Visualizing a universal harmonious order in society- Undivided Society, Universal Orderfrom family to world family.

Include practice sessions to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value in relationships. Discuss with scenarios. Elicit examples from students' lives

Unit 4:

Understanding Harmony in the Nature and Existence - Whole existence as Coexistence

- Understanding the harmony in the Nature
- Interconnectedness and mutual fulfilment among the four orders of naturerecyclability and self-regulation in nature
- Understanding Existence as Co-existence of mutually interacting units in all- pervasive space
- Holistic perception of harmony at all levels of existence.

Include practice sessions to discuss human being as cause of imbalance in nature (film "Home" can be used), pollution, depletion of resources and role of technology etc.

Unit 5:

Implications of the above Holistic Understanding of Harmony on Professional Ethics

- Natural acceptance of human values
- Definitiveness of Ethical Human Conduct
- Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order

- Competence in professional ethics: a. Ability to utilize the professional competence for augmenting universal human order b. Ability to identify the scope and characteristics of people friendly and eco-friendly production systems, c. Ability to identify and develop appropriate technologies and management patterns for above production systems.
- Case studies of typical holistic technologies, management models and production systems
- Strategy for transition from the present state to Universal Human Order: a. At the level of individual: as socially and ecologically responsible engineers, technologists and managers b. At the level of society: as mutually enriching institutions and organizations
- Sum up.

Include practice Exercises and Case Studies will be taken up in Practice (tutorial) Sessions eg. To discuss the conduct as an engineer or scientist etc.

Text Book

- 1. R R Gaur, R Asthana, G P Bagaria, "A Foundation Course in Human Values and Professional Ethics", 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-47-1
- 2. R R Gaur, R Asthana, G P Bagaria, "Teachers' Manual for A Foundation Course in Human Values and Professional Ethics", 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-53-2

Reference Books

- 1. Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amar kantak, 1999.
- 2. A. N. Tripathi, "Human Values", New Age Intl. Publishers, New Delhi, 2004.
- 3. The Story of Stuff (Book).
- 4. Mohandas Karamchand Gandhi "The Story of My Experiments with Truth"
- 5. E. FSchumacher. "Small is Beautiful"
- 6. Slow is Beautiful –Cecile Andrews
- 7. J C Kumarappa "Economy of Permanence"
- 8. Pandit Sunderlal "Bharat Mein Angreji Raj"
- 9. Dharampal, "Rediscovering India"
- 10. Mohandas K. Gandhi, "Hind Swaraj or Indian Home Rule"
- 11. India Wins Freedom Maulana Abdul Kalam Azad
- 12. Vivekananda Romain Rolland(English)
- 13. Gandhi Romain Rolland (English)

MOE OF CONDUCT (L-T-P-C 2-1-0-2)

Lecture hours are to be used for interactive discussion, placing the proposals about the topics at hand and motivating students to reflect, explore and verify them. Tutorial hours are to be used for practice sessions.

While analyzing and discussing the topic, the faculty mentor's role is in pointing to essential elements to help in sorting them out from the surface elements. In other words, help the students explore the important or critical elements.

In the discussions, particularly during practice sessions (tutorials), the mentor encourages the student to connect with one's own self and do self-observation, self-reflection and self-exploration.

Scenarios may be used to initiate discussion. The student is encouraged to take up "ordinary" situations rather than" extra-ordinary" situations. Such observations and their analyses are shared and discussed with other students and faculty mentor, in a group sitting.

Tutorials (experiments or practical) are important for the course. The difference is that the laboratory is everyday life, and practicals are how you behave and work in real life. Depending on the nature of topics, worksheets, home assignments and/or activities are included. The practice sessions (tutorials) would also provide support to a student in performing actions commensurate to his/her beliefs. It is intended that this would lead to development of commitment, namely behaving and working based on basic human values.

OUTCOME OF THECOURSE:

By the end of the course,

- Students are expected to become more aware of themselves, and their surroundings (family, society, nature)
- They would become more responsible in life, and in handling problems with sustainable solutions, while keeping human relationships and human nature in mind.
- They would have better critical ability.
- They would also become sensitive to their commitment towards what they have understood (human values, human relationship and human society).
- It is hoped that they would be able to apply what they have learnt to their own self in different day-to-day settings in real life, at least a beginning would be made in this direction.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech- CSE -(AI &ML) II-I Sem L T P C

1 0 2 2

20A05304Web Application Development

(Common to CSE, CSE (AI), CSE (AI & ML) and AI& DS)

Course Objectives:

- Learn website development using HTML, CSS, JavaScript.
- Understand the concepts of responsive web development using the bootstrap framework
- Make use of the JQueryjavascript library to provide interactiveness to the websites.
- Discover how to use Google Charts to provide a better way to visualize data on a website
- 5. Learn Content Management Systems to speed the development process

Course Outcomes (CO):

After completion of the course, students will be able to

- Construct web sites with valid HTML, CSS, JavaScript
- Create responsive Web designs that work on phones, tablets, or traditional laptops and widescreen monitors.
- Develop websites using jQuery to provide interactivity and engaging user experiences
- Embed Google chart tools in a website for better visualization of data.
- Design and develop web applications using Content Management Systems like WordPress

Activities:

Module - 1:

HTML: What is a browser?, What is HTML?, Elements and Tags, Basic HTML5 structure, Metadata, <title>, Adding favicon, Comments, headings

Task: Create a Basic HTML document

Module - 2:

HTML (continued): Block-Level Elements & Inline Elements, Links (Understand Absolute vs Relative paths), Lists, Images, iframe (embed youtube video)

Task: Create your Profile Page

Module - 3:

HTML (continued): Tables: , , , , Attributes for each Table element

Task: Create a Class Timetable (to merge rows/columns, use rowspan/colspan)

Module - 4:

HTML (continued): Form Elements: <input>, <select>, <textarea>, <button>, Attributes for each Form element

Task: Create a Student Hostel Application Form

Module - 5:

Cascading Style Sheets (CSS): CSS Properties, Types of CSS, Selectors, box model, Pseudoelements, z-index

Task: Make the Hostel Application Form designed in Module -4 beautiful using CSS (add colors, backgrounds, change font properties, borders, etc.)

Module - 6:

Bootstrap - CSS Framework: Layouts (Containers, Grid system), Forms, Other Components

Task: Style the Hostel Application Form designed in Module-5still more beautiful using Bootstrap CSS (Re-size browser and check how the webpage displays in mobile resolution)

Module - 7:

HTTP & Browser Developer Tools: Understand HTTP Headers (Request & Response Headers), URL & its Anatomy, Developer Tools: Elements/Inspector, Console, Network, Sources, performance, Application Storage.

Task: Analyse various HTTP requests (initiators, timing diagrams, responses) and identify problems if any.

Module - 8:

Javascript: Variables, Data Types, Operators, Statements, Objects, Functions, Events & Event Listeners, DOM.

Task: Design a simple calculator using JavaScript to perform sum, product, difference, and quotient operations:

Module - 9:

Dynamic HTML with JavaScript: Manipulate DOM, Error Handling, Promises, async/await, Modules.

Task:Design& develop a Shopping Cart Application with features including Add Products, Update Quantity, Display Price(Sub-Total & Total), Remove items/products from the cart.

Module - 10:

JQuery - A Javascript Library: Interactions, Widgets, Effects, Utilities, Ajax using JQuery.

Task: Validate all Fields and Submit the Hostel Application Form designed in Module-6 using JQuery

Module - 11:

Google Charts: Understand the Usage of Pie chart, Bar Chart, Histogram, Area & Line Charts, Gantt Charts.

Task: Develop an HTML document to illustrate each chart with real-time examples.

Module - 12:

Open Source CMS (Content Management System): What is a CMS?, Install CMS, Themes, Plugins.

Task: Develop an E-learning website using any CMS(for example WordPress)

References:

- 1. Deitel and Deitel and Nieto, —Internet and World Wide Web How to Programl, Prentice Hall, 5th Edition, 2011.
- 2. Web Technologies, Uttam K. Roy, Oxford Higher Education., 1st edition, 10th impression, 2015.
- 3. Stephen Wynkoop and John Burke Running a Perfect Websitel, QUE, 2nd Edition, 1999.
- 4. Jeffrey C and Jackson, —Web Technologies A Computer Science PerspectivePearsonEducation, 2011.
- 5. Gopalan N.P. and Akilandeswari J., —Web Technology, Prentice Hall of India, 2011.

Online Learning Resources/Virtual Labs:

- a. HTML: https://html.spec.whatwg.org/multipage/
- b. HTML: https://developer.mozilla.org/en-US/docs/Glossary/HTML5
- c. CSS: https://www.w3.org/Style/CSS/
- d. Bootstrap CSS Framework: https://getbootstrap.com/
- e. Browser Developer Tools: https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_are_browser_developer_tools
- f. Javascript: https://developer.mozilla.org/en-US/docs/Web/JavaScript
- g. JQuery: https://jquery.com
- h. Google Charts: https://developers.google.com/chart
- i. Wordpress: https://wordpress.com

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech- CSE -(AI &ML) II-I Sem L T P C

3 0 0 3
20A54404 Deterministic & Stochastic Statistical Methods

(Common to CSE, IT, CSE (AI), CSE (AI & ML) and AI & DS)

Pre-requisite Basic Mathematics

Course Objectives:

This course provides a study of various Mathematical Methods and Statistical Methods which is needed for Artificial Intelligence, Machine Learning, and Data Science and also for Computer Science and engineering problems.

Course Outcomes (CO):

After completion of the course, students will be able to

- Apply logical thinking to problem-solving in context. •
- Employ methods related to these concepts in a variety of data science applications.
- Use appropriate technology to aid problem-solving and data analysis.
- The Bayesian process of inference in probabilistic reasoning system.
- Demonstrate skills in unconstrained optimization. •

UNIT - I **Data Representation**

Distance measures, Projections, Notion of hyper planes, half-planes. Principal Component Analysis-Population Principal Components, sample principal coefficients, covariance, matrix of data set, Dimensionality reduction, Singular value decomposition, Gram Schmidt process.

UNIT - II **Single Variable Distribution**

Random variables (discrete and continuous), probability density functions, properties, mathematical expectation- Probability distribution - Binomial, Poisson approximation to the binomial distribution and normal distribution-their properties-Uniform distribution-exponential distribution.

UNIT - III **Stochastic Processes And Markov Chains:**

Introduction to Stochastic processes- Markov process. Transition Probability, Transition Probability Matrix, First order and Higher order Markov process, step transition probabilities, Markov chain, Steady state condition, Markov analysis.

UNIT - IV **Multivariate Distribution Theory**

Multivariate Normal distribution - Properties, Distributions of linear combinations, independence, marginal distributions, conditional distributions, Partial and Multiple correlation coefficient. Moment generating function.

BAYESIAN INFERENCE AND ITS APPLICATIONS: Statistical tests and Bayesian model comparison, Bit, Surprisal, Entropy, Source coding theorem, Joint entropy, Conditional entropy, Kullback-Leibler divergence.

UNIT - V **Optimization**

Unconstrained optimization, Necessary and sufficiency conditions for optima, Gradient descent methods, Constrained optimization, KKT conditions, Introduction to non-gradient techniques, Introduction to least squares optimization, Optimization view of machine learning. Data Science Methods: Linear regression as an exemplar function approximation problem, linear classification problems.

9 Hrs

9 Hrs

10 Hrs

9 Hrs

9 Hrs

Textbooks:

- 1. Mathematics for Machine Learning by A. Aldo Faisal, Cheng Soon Ong, and Marc Peter Deisenroth
- Dr.B.S Grewal, Higher Engineering Mathematics, 45th Edition, Khanna Publishers.
 Operations Research, S.D. Sharma

Reference Books:

- 1. Operations Research, An Introduction, Hamdy A. Taha, Pearson publishers.
- 2. A Probabilistic Theory of Pattern Recognition by Luc Devroye, Laszlo Gyorfi, Gabor Lugosi.

Online Learning Resources:

https://www.math.brown.edu/swatson2/classes/data1010/pdf/data1010.pdf

3 0 0 3

9 Hrs

20A05401T DATABASE MANAGEMENT SYSTEMS

(Common to CSE, IT, CSE(DS), CSE (IoT), CSE (AI), CSE (AI & ML) and AI & DS)

Course Objectives:

This course is designed to:

- Train in the fundamental concepts of database management systems, database modeling and design, SQL, PL/SQL and system implementation techniques.
- Enable students to model ER diagrams for any customized application
- Inducting appropriate strategies for optimization of queries.
- Provide knowledge on concurrency techniques
- Demonstrate the organization of Databases

Course Outcomes (CO):

After completion of the course, students will be able to

- Design a database for a real-world information system
- Define transactions that preserve the integrity of the database
- Generate tables for a database
- Organize the data to prevent redundancy
- Pose queries to retrieve the information from the database.

UNIT - I Introduction, Introduction to Relational Model 9Hrs

Introduction: Database systems applications, Purpose of Database Systems, view of Data, Database Languages, Relational Databases, Database Design, Data Storage and Querying, Transaction Management, Database Architecture, Data Mining and Information Retrieval, Specialty Databases, Database users and Administrators,

Introduction to Relational Model: Structure of Relational Databases, Database Schema, Keys, Schema Diagrams, Relational Query Languages, Relational Operations

UNIT - II Introduction to SQL, Advanced SQL

Introduction to SQL: Overview of the SQL Query Language, SQL Data Definition, Basic Structure of SQL Queries, Additional Basic Operations, Set Operations, Null Values, Aggregate Functions, Nested Sub-queries, Modification of the Database. Intermediate SQL: Joint Expressions, Views, Transactions, Integrity Constraints, SQL Data types and schemas, Authorization.

Advanced SQL: Accessing SQL from a Programming Language, Functions and Procedures, Triggers, Recursive Queries, OLAP, Formal relational query languages.

UNIT - III Database Design and the E-R Model, Relational Database 8Hrs Design

Database Design and the E-R Model: Overview of the Design Process, The Entity-Relationship Model, Constraints, Removing Redundant Attributes in Entity Sets, Entity-Relationship Diagrams, Reduction to Relational Schemas, Entity-Relationship Design Issues.

Relational Database Design:

Features of Good Relational Designs, Atomic Domains and First Normal Form, Decomposition Using Functional Dependencies, Functional-Dependency Theory, Algorithms for Decomposition, Decomposition Using Multivalued Dependencies, More Normal Forms.

UNIT - IV Query Processing, Query optimization 8 Hrs

Query Processing: Overview, Measures of Query cost, Selection operation, sorting, Join Operation, other operations, Evaluation of Expressions.

Query optimization: Overview, Transformation of Relational Expressions, Estimating statistics of Expression results, Choice of Evaluation Plans, Materialized views, Advanced Topics in Query Optimization.

UNIT - V Transaction Management, Concurrency Control, Recovery 10Hrs System

Transaction Management:

Transactions: Concept, A Simple Transactional Model, Storage Structures, Transaction Atomicity and Durability, Transaction Isolation, Serializability, Isolation and Atomicity, Transaction Isolation Levels, Implementation of Isolation Levels, Transactions as SQL Statements.

Concurrency Control: Lock-based Protocols, Deadlock Handling, Multiple granularity, Timestamp-based Protocols, and Validation-based Protocols.

Recovery System: Failure Classification, Storage, Recovery and Atomicity, Recovery Algorithm, Buffer Management, Failure with Loss of Nonvolatile Storage, Early Lock Release and Logical Undo Operations.

Textbooks:

1. A.Silberschatz, H.F.Korth, S.Sudarshan, "Database System Concepts", 6/e, TMH 2019

Reference Books:

1. Database Management System, 6/e RamezElmasri, Shamkant B. Navathe, PEA

2. Database Principles Fundamentals of Design Implementation and Management, Carlos Coronel, Steven Morris, Peter Robb, Cengage Learning.

3. Database Management Systems, 3/e, Raghurama Krishnan, Johannes Gehrke, TMH

Online Learning Resources:

https://onlinecourses.nptel.ac.in/noc21_cs04/preview

3 0 0 3

8Hrs

20A05402T OPERATING SYSTEMS

(Common to CSE, IT, CSE(DS), CSE (IoT), CSE (AI), CSE (AI & ML) and AI & DS)

Pre-requisite

Basics of CO and DBMS

Course Objectives:

The course is designed to

- Understand basic concepts and functions of operating systems
- Understand the processes, threads and scheduling algorithms.
- Provide good insight on various memory management techniques
- Expose the students with different techniques of handling deadlocks
- Explore the concept of file-system and its implementation issues
- Familiarize with the basics of the Linux operating system
- Implement various schemes for achieving system protection and security

Course Outcomes (CO):

After completion of the course, students will be able to

- Realize how applications interact with the operating system
- Analyze the functioning of a kernel in an Operating system.
- Summarize resource management in operating systems
- Analyze various scheduling algorithms
- Examine concurrency mechanism in Operating Systems
- Apply memory management techniques in the design of operating systems
- Understand the functionality of the file system
- Compare and contrast memory management techniques.
- Understand deadlock prevention and avoidance.
- Perform administrative tasks on Linux based systems.

UNIT - I Operating Systems Overview, System Structures

Operating Systems Overview: Introduction, Operating system functions, Operating systems operations, Computing environments, Open-Source Operating Systems

System Structures: Operating System Services, User and Operating-System Interface, systems calls, Types of System Calls, system programs, Operating system Design and Implementation, Operating system structure, Operating system debugging, System Boot.

UNIT - II Process Concept, Multithreaded Programming,Process 10Hrs Scheduling, Inter-process Communication

Process Concept: Process scheduling, Operations on processes, Inter-process communication,

Lecture 8Hrs

Communication in client server systems.

Multithreaded Programming: Multithreading models, Thread libraries, Threading issues, Examples.

Process Scheduling: Basic concepts, Scheduling criteria, Scheduling algorithms, Multiple processor scheduling, Thread scheduling, Examples.

Inter-process Communication: Race conditions, Critical Regions, Mutual exclusion with busy waiting, Sleep and wakeup, Semaphores, Mutexes, Monitors, Message passing, Barriers, Classical IPC Problems - Dining philosophers problem, Readers and writers problem.

UNIT - III Memory-Management Strategies, Virtual Memory Lecture 8Hrs Management

Memory-Management Strategies: Introduction, Swapping, Contiguous memory allocation, Paging, Segmentation, Examples.

Virtual Memory Management: Introduction, Demand paging, Copy on-write, Page replacement, Frame allocation, Thrashing, Memory-mapped files, Kernel memory allocation, Examples.

UNIT - IV Deadlocks, File Systems Lecture 9Hrs

Deadlocks: Resources, Conditions for resource deadlocks, Ostrich algorithm, Deadlock detection And recovery, Deadlock avoidance, Deadlock prevention.

File Systems: Files, Directories, File system implementation, management and optimization.

Secondary-Storage Structure: Overview of disk structure, and attachment, Disk scheduling, RAID structure, Stable storage implementation.

UNIT - V System Protection, System Security

System Protection: Goals of protection, Principles and domain of protection, Access matrix, Access control, Revocation of access rights.

System Security: Introduction, Program threats, System and network threats, Cryptography as a security, User authentication, implementing security defenses, firewalling to protect systems and networks, Computer security classification.

Case Studies: Linux, Microsoft Windows.

Textbooks:

- 1. Silberschatz A, Galvin P B, and Gagne G, Operating System Concepts, 9th edition, Wiley, 2016.
- 2. Tanenbaum A S, Modern Operating Systems, 3rd edition, Pearson Education, 2008.

(Topics: Inter-process Communication and File systems.)

Reference Books:

- 1. Tanenbaum A S, Woodhull A S, Operating Systems Design and Implementation, 3rd edition, PHI, 2006.
- 2. Dhamdhere D M, Operating Systems A Concept Based Approach, 3rd edition, Tata McGraw-Hill, 2012.
- 3. Stallings W, Operating Systems -Internals and Design Principles, 6th edition, Pearson Education,

2009

4. Nutt G, Operating Systems, 3rd edition, Pearson Education, 2004

Online Learning Resources:

https://nptel.ac.in/courses/106/106/106106144/

http://peterindia.net/OperatingSystems.html

3 0 0 3

20A30401T ARTIFICIAL INTELLIGENCE

(Common to CSE (AI), CSE (AI & ML) and AI & DS)

Pre-requisite Mathematics and Programming

Course Objectives:

- To introduce Artificial Intelligence
- To Teach about the machine learning environment
- To Present the searching Technique for Problem Solving
- To Introduce Natural Language Processing and Robotics

Course Outcomes (CO):

After completion of the course, students will be able to

- Apply searching techniques for solving a problem
- Design Intelligent Agents
- Develop Natural Language Interface for Machines
- Design mini robots
- Summarize past, present and future of Artificial Intelligence

UNIT - I Introduction

Introduction: What is AI, Foundations of AI, History of AI, The State of Art.

Intelligent Agents: Agents and Environments, Good Behaviour: The Concept of Rationality, The Nature of Environments, The Structure of Agents.

UNIT - II Solving Problems by searching Lecture 8Hrs

Problem Solving Agents, Example problems, Searching for Solutions, Uninformed Search Strategies, Informed search strategies, Heuristic Functions, Beyond Classical Search: Local Search Algorithms and Optimization Problems, Local Search in Continues Spaces, Searching with Nondeterministic Actions, Searching with partial observations, online search agents and unknown environments.

UNIT - III **Reinforcement** Learning & Natural Language Lecture 9Hrs Processing

Reinforcement Learning: Introduction, Passive Reinforcement Learning, Active Reinforcement Learning, Generalization in Reinforcement Learning, Policy Search, applications of RL

Natural Language Processing: Language Models, Text Classification, Information Retrieval, Information Extraction.

UNIT - IV Lecture 9Hrs **Natural Language for Communication**

Natural Language for Communication: Phrase structure grammars, Syntactic Analysis,

Lecture 8Hrs

Augmented Grammars and semantic Interpretation, Machine Translation, Speech Recognition

Perception: Image Formation, Early Image Processing Operations, Object Recognition by appearance, Reconstructing the 3D World, Object Recognition from Structural information, Using Vision.

UNIT - V Robotics

Lecture 8 Hrs

Robotics: Introduction, Robot Hardware, Robotic Perception, Planning to move, Planning uncertain movements, Moving, Robotic software architectures, application domains

Philosophical foundations: Weak AI, Strong AI, Ethics and Risks of AI, Agent Components, Agent Architectures, Are we going in the right direction, What if AI does succeed.

Textbooks:

1. Stuart J.Russell, Peter Norvig, "Artificial Intelligence A Modern Approach", 3rd Edition, Pearson Education, 2019.

Reference Books:

- 1. Nilsson, Nils J., and Nils Johan Nilsson. Artificial intelligence: a new synthesis. Morgan Kaufmann, 1998.
- 2. Johnson, Benny G., Fred Phillips, and Linda G. Chase. "An intelligent tutoring system for the accounting cycle: Enhancing textbook homework with artificial intelligence." Journal of Accounting Education 27.1 (2009): 30-39.

Online Learning Resources:

http://peterindia.net/AILinks.html

3 0 0 3

20A52301 MANAGERIAL ECONOMICS AND FINANCIAL ANALYSIS

(Common to All branches of Engineering)

Course Objectives:

- To inculcate the basic knowledge of micro economics and financial accounting
- To make the students learn how demand is estimated for different products, input-output relationship for optimizing production and cost
- To Know the Various types of market structure and pricing methods and strategy
- To give an overview on investment appraisal methods to promote the students to learn how to plan long-term investment decisions.
- To provide fundamental skills on accounting and to explain the process of preparing financial statements

Course Outcomes (CO):

- Define the concepts related to Managerial Economics, financial accounting and management.
- Understand the fundamentals of Economics viz., Demand, Production, cost, revenue and markets
- Apply the Concept of Production cost and revenues for effective Business decision
- Analyze how to invest their capital and maximize returns
- Evaluate the capital budgeting techniques

• Develop the accounting statements and evaluate the financial performance of business entity. UNIT - I Managerial Economics

Introduction – Nature, meaning, significance, functions, and advantages. Demand-Concept, Function, Law of Demand - Demand Elasticity- Types – Measurement. Demand Forecasting- Factors governing Forecasting, Methods. Managerial Economics and Financial Accounting and Management.

UNIT - II **Production and Cost Analysis**

Introduction – Nature, meaning, significance, functions and advantages. Production Function– Leastcost combination– Short run and Long run Production Function- Isoquants and Isocosts, MRTS -Cobb-Douglas Production Function - Laws of Returns - Internal and External Economies of scale. Cost & Break-Even Analysis - Cost concepts and Cost behavior- Break-Even Analysis (BEA) -Determination of Break-Even Point (Simple Problems)-Managerial significance and limitations of Break-Even Analysis.

UNIT - III Business Organizations and Markets

Introduction – Nature, meaning, significance, functions and advantages. Forms of Business Organizations- Sole Proprietary - Partnership - Joint Stock Companies - Public Sector Enterprises. Types of Markets - Perfect and Imperfect Competition - Features of Perfect Competition Monopoly-

Monopolistic Competition-Oligopoly-Price-Output Determination - Pricing Methods and Strategies

UNIT - IV Capital Budgeting

Introduction – Nature, meaning, significance, functions and advantages. Types of Working Capital, Components, Sources of Short-term and Long-term Capital, Estimating Working capital requirements. Capital Budgeting– Features, Proposals, Methods and Evaluation. Projects – Pay Back Method, Accounting Rate of Return (ARR) Net Present Value (NPV) Internal Rate Return (IRR) Method (sample problems)

UNIT - V Financial Accounting and Analysis

Introduction – Nature, meaning, significance, functions and advantages. Concepts and Conventions-Double-Entry Book Keeping, Journal, Ledger, Trial Balance- Final Accounts (Trading Account, Profit and Loss Account and Balance Sheet with simple adjustments). *Financial Analysis* - Analysis and Interpretation of Liquidity Ratios, Activity Ratios, and Capital structure Ratios and Profitability.

Textbooks:

- 1. Varshney&Maheswari: Managerial Economics, Sultan Chand, 2013.
- 2. Aryasri: Business Economics and Financial Analysis, 4/e, MGH, 2019

Reference Books:

- 1. Ahuja Hl Managerial economics Schand, 3/e, 2013
- 2. S.A. Siddiqui and A.S. Siddiqui: Managerial Economics and Financial Analysis, New Age International, 2013.
- 3. Joseph G. Nellis and David Parker: Principles of Business Economics, Pearson, 2/e, New Delhi.
- 4. Domnick Salvatore: Managerial Economics in a Global Economy, Cengage,
 - 2013.

Online Learning Resources:

https://www.slideshare.net/123ps/managerial-economics-ppt

https://www.slideshare.net/rossanz/production-and-cost-45827016

https://www.slideshare.net/darkyla/business-organizations-19917607

https://www.slideshare.net/balarajbl/market-and-classification-of-market

https://www.slideshare.net/ruchi101/capital-budgeting-ppt-59565396

https://www.slideshare.net/ashu1983/financial-accounting

3 0 0 3

20A52302ORGANISATIONAL BEHAVIOUR

(Common to All branches of Engineering)

Course Objectives:

- To enable student's comprehension of organizational behavior
- To offer knowledge to students on self-motivation, leadership and management
- To facilitate them to become powerful leaders
- To Impart knowledge about group dynamics
- To make them understand the importance of change and development

Course Outcomes (CO):

- Define the Organizational Behaviour, its nature and scope.
- Understand the nature and concept of Organizational behaviour
- Apply theories of motivation to analyse the performance problems
- Analyse the different theories of leadership
- Evaluate group dynamics
- Develop as powerful leader

UNIT - I Introduction to Organizational Behavior

Meaning, definition, nature, scope and functions - Organizing Process – Making organizing effective -Understanding Individual Behaviour –Attitude -Perception - Learning – Personality.

UNIT - II Motivation and Leading

Theories of Motivation- Maslow's Hierarchy of Needs - Hertzberg's Two Factor Theory - Vroom's theory of expectancy – Mc Cleland's theory of needs–Mc Gregor's theory X and theory Y– Adam's equity theory – Locke's goal setting theory– Alderfer's ERG theory .

UNIT - III Organizational Culture

Introduction – Meaning, scope, definition, Nature - Organizational Climate - Leadership - Traits Theory–Managerial Grid - Transactional Vs Transformational Leadership - Qualities of good Leader - Conflict Management -Evaluating Leader- Women and Corporate leadership.

UNIT - IV Group Dynamics

Introduction – Meaning, scope, definition, Nature- Types of groups - Determinants of group behavior - Group process – Group Development - Group norms - Group cohesiveness - Small Groups - Group decision making - Team building - Conflict in the organization– Conflict resolution

UNIT - V Organizational Change and Development

Introduction –Nature, Meaning, scope, definition and functions- Organizational Culture - Changing the Culture – Change Management – Work Stress Management - Organizational management – Managerial implications of organization's change and development

Textbooks:

1. Luthans, Fred, Organisational Behaviour, McGraw-Hill, 12 Th edition 2011

2. P Subba Ran, Organisational Behaviour, Himalya Publishing House 2017

Reference Books:

- McShane, Organizational Behaviour, TMH 2009
- Nelson, Organisational Behaviour, Thomson, 2009.
- Robbins, P. Stephen, Timothy A. Judge, Organisational Behaviour, Pearson 2009.
- Aswathappa, Organisational Behaviour, Himalaya, 2009

Online Learning Resources:

httphttps://www.slideshare.net/Knight1040/organizational-culture-9608857s://www.slideshare.net/AbhayRajpoot3/motivation-165556714

https://www.slideshare.net/harshrastogi1/group-dynamics-159412405

https://www.slideshare.net/vanyasingla1/organizational-change-development-26565951

3 0 0 3

20A52303 Business Environment

(Common to All branches of Engineering)

Course Objectives:

- To make the student to understand about the business environment
- To enable them in knowing the importance of fiscal and monitory policy
- To facilitate them in understanding the export policy of the country
- To Impart knowledge about the functioning and role of WTO
- To Encourage the student in knowing the structure of stock markets

Course Outcomes (CO):

- Define Business Environment and its Importance.
- Understand various types of business environment.
- Apply the knowledge of Money markets in future investment
- Analyse India's Trade Policy
- Evaluate fiscal and monitory policy
- Develop a personal synthesis and approach for identifying business opportunities

UNIT - I Overview of Business Environment

Introduction – meaning Nature, Scope, significance, functions and advantages. Types-Internal &External, Micro and Macro. Competitive structure of industries -Environmental analysis-advantages & limitations of environmental analysis& Characteristics of business.

UNIT - II Fiscal & Monetary Policy

Introduction – Nature, meaning, significance, functions and advantages. Public Revenues - Public Expenditure - Evaluation of recent fiscal policy of GOI. Highlights of Budget- Monetary Policy - Demand and Supply of Money –RBI -Objectives of monetary and credit policy - Recent trends- Role of Finance Commission.

UNIT - III India's Trade Policy

Introduction – Nature, meaning, significance, functions and advantages. Magnitude and direction of Indian International Trade - Bilateral and Multilateral Trade Agreements - EXIM policy and role of EXIM bank -Balance of Payments– Structure & Major components - Causes for Disequilibrium in Balance of Payments - Correction measures.

UNIT - IV World Trade Organization

Introduction – Nature, significance, functions and advantages. Organization and Structure - Role and functions of WTO in promoting world trade - GATT -Agreements in the Uruguay Round –TRIPS, TRIMS - Disputes Settlement Mechanism - Dumping and Anti-dumping Measures.

UNIT - V Money Markets and Capital Markets

Introduction – Nature, meaning, significance, functions and advantages. Features and components of Indian financial systems - Objectives, features and structure of money markets and capital markets - Reforms and recent development – SEBI – Stock Exchanges - Investor protection and role of SEBI, Introduction to international finance.

Textbooks:

1. Francis Cherunilam (2009), International Business: Text and Cases, Prentice Hall of India.

2. K. Aswathappa, Essentials of Business Environment: Texts and Cases & Exercises 13th Revised Edition.HPH2016

Reference Books:

1.K. V. Sivayya, V. B. M Das (2009), Indian Industrial Economy, Sultan Chand Publishers,

New Delhi, India.

2. Sundaram, Black (2009), International Business Environment Text and Cases, Prentice Hall of

India, New Delhi, India.

3. Chari. S. N (2009), International Business, Wiley India.

4.E. Bhattacharya (2009), International Business, Excel Publications, New Delhi.

Online Learning Resources:

https://www.slideshare.net/ShompaDhali/business-environment-53111245

https://www.slideshare.net/rbalsells/fiscal-policy-ppt

https://www.slideshare.net/aguness/monetary-policy-presentationppt

https://www.slideshare.net/DaudRizwan/monetary-policy-of-india-69561982

https://www.slideshare.net/ShikhaGupta31/indias-trade-policyppt

https://www.slideshare.net/viking2690/wto-ppt-60260883

https://www.slideshare.net/prateeknepal3/ppt-mo

0 0 3 1.5

20A05401P Database Management Systems Laboratory

(Common to CSE, IT, CSE(DS), CSE (IoT), CSE (AI), CSE (AI & ML) and AI & DS)

Course Objectives:

- To implement the basic knowledge of SQL queries and relational algebra.
- To construct database models for different database applications.
- To apply normalization techniques for refining of databases.
- To practice various triggers, procedures, and cursors usingPL/SQL.
- To design and implementation of a database for an organization

Course Outcomes (CO):

After completion of the course, students will be able to

- Design database for any real world problem
- Implement PL/SQL programs
- Define SQL queries
- Decide the constraints
- Investigate for data inconsistency

List of Experiments:

Week-1: CREATION OF TABLES

Name	Туре
Empno	Number
Ename	Varchar2(20)
Job	Varchar2(20)
Mgr	Number
Sal	Number

1. Create a table called Employee with the following structure.

- a. Add a column commission with domain to the Employee table.
- b. Insert any five records into the table.
- c. Update the column details of job
- d. Rename the column of Employ table using alter command.
- e. Delete the employee whose empno is19.
- 2. Create department table with the following structure.

Name	Туре
Deptno	Number
Deptname	Varchar2(20)
location	Varchar2(20)

- a. Add column designation to the department table.
- b. Insert values into thetable.
- c. List the records of emp table grouped bydeptno.
- d. Update the record where deptno is9.
- e. Delete any column data from thetable
- 3. Create a table called Customertable

Name	Туре
Cust name	Varchar2(20)
Cust street	Varchar2(20)
Cust city	Varchar2(20)

- a. Insert records into thetable.
- b. Add salary column to thetable.
- c. Alter the table columndomain.
- d. Drop salary column of the customertable.
- e. Delete the rows of customer table whose ust_city is 'hyd'.
- f. Create a table called branchtable.

Name	Туре
Branch name	Varchar2(20)
Branch city	Varchar2(20)
asserts	Number

- 4. Increase the size of data type for asserts to the branch.
 - a. Add and drop a column to the branch table.
 - b. Insert values to the table.
 - c. Update the branch name column
 - d. Delete any two columns from the table
- 5. Create a table called sailor table

Name	Туре
Sid	Number
Sname	Varchar2(20)
rating	Varchar2(20)

- a. Add column age to the sailor table.
- b. Insert values into the sailor table.
- c. Delete the row with rating>8.
- d. Update the column details of sailor.
- e. Insert null values into the table.
- 6. Create a table called reserves table

Name	Туре
Boat id	Integer
sid	Integer
day	Integer

a. Insert values into the reservestable.

- b. Add column time to the reservestable.
- c. Alter the column day data type todate.
- d. Drop the column time in thetable.
- e. Delete the row of the table with somecondition.

Week-2: QUERIES USING DDL AND DML

- 1. a. Create a user and grant all permissions to theuser.
 - b. Insert the any three records in the employee table and use rollback. Check theresult.
 - c. Add primary key constraint and not null constraint to the employeetable.
 - d. Insert null values to the employee table and verify theresult.
- 2. a. Create a user and grant all permissions to theuser.
 - b. Insert values in the department table and usecommit.
 - c. Add constraints like unique and not null to the departmenttable.
 - d. Insert repeated values and null values into thetable.
- 3. a. Create a user and grant all permissions to theuser.
 - b. Insert values into the table and use commit.
 - c. Delete any three records in the department table and use rollback.
 - d. Add constraint primary key and foreign key to thetable.
- 4. a. Create a user and grant all permissions to theuser.
 - b. Insert records in the sailor table and usecommit.
 - c. Add save point after insertion of records and verify save point.
 - d. Add constraints not null and primary key to the sailortable.
- 5. a. Create a user and grant all permissions to theuser.
 - b. Use revoke command to remove userpermissions.
 - c. Change password of the usercreated.
 - d. Add constraint foreign key and notnull.
- 6. a. Create a user and grant all permissions to theuser.
 - b. Update the table reserves and use savepointandrollback.
 - c. Add constraint primary key, foreign key and not null to the reserves table
 - **d.** Delete constraint not null to the tablecolumn

Week-3:QUERIES USING AGGREGATE FUNCTIONS

- 1. a. By using the group by clause, display the enames who belongs to deptno 10 alongwithaveragesalary.
 - b. Display lowest paid employee details under eachdepartment.
 - c. Display number of employees working in each department and their departmentnumber.

d. Using built in functions, display number of employees working in each department and their department name from dept table. Insert deptname to dept table and insert deptname for each row, do the required thing specified above.

- e. List all employees which start with either B or C.
- f. Display only these ename of employees where the maximum salary is greater than or equal to 5000.
- 2. a. Calculate the average salary for each differentjob.
 - b. Show the average salary of each job excludingmanager.
 - c. Show the average salary for all departments employing more than threepeople.
 - d. Display employees who earn more than thelowest salary in department 30
 - e. Show that value returned by sign (n)function.
 - f. How many days between day of birth to currentdate
- 3. a. Show that two substring as singlestring.

- b. List all employee names, salary and 15% rise insalary.
- c. Display lowest paid emp details under eachmanager
- d. Display the average monthly salary bill for eachdeptno.
- e. Show the average salary for all departments employing more than twopeople.
- f. By using the group by clause, display the eid who belongs to deptno 05 along withaverage salary.
- 4. a. Count the number of employees in department20
 - b. Find the minimum salary earned byclerk.
 - c. Find minimum, maximum, average salary of allemployees.
 - d. List the minimum and maximum salaries for each jobtype.
 - e. List the employee names in descendingorder.
 - f. List the employee id, names in ascending order byempid.
- a. Find the sids ,names of sailors who have reserved all boats called "INTERLAKE Find the age of youngest sailor who is eligible to vote for each rating level with at least two such sailors.
 - b. Find the sname , bid and reservation date for eachreservation.
 - c. Find the ages of sailors whose name begin and end with B and has at least 3characters.
 - d. List in alphabetic order all sailors who have reserved redboat.
 - e. Find the age of youngest sailor for each ratinglevel.
- 6. a. List the Vendors who have delivered products within 6 months from orderdate.
 - b. Display the Vendor details who have supplied both Assembled and Subparts.
 - c. Display the Sub parts by grouping the Vendor type (Local or NonLocal).
 - d. Display the Vendor details in ascendingorder.
 - e. Display the Sub part which costs more than any of the Assembledparts.
 - f. Display the second maximum cost Assembledpart

Week-4: PROGRAMS ON PL/SQL

- 1. a. Write a PL/SQL program to swaptwonumbers.
 - b. Write a PL/SQL program to find the largest of threenumbers.
- 2. a. Write a PL/SQL program to find the total and average of 6 subjects and display thegrade.
- b. Write a PL/SQL program to find the sum of digits in a givennumber.
- 3. a. Write a PL/SQL program to display the number in reverseorder.
 - b. Writea PL/SQLprogramtocheckwhetherthegivennumberisprimeornot.
- 4. a. Write a PL/SQL program to find the factorial of a givennumber.
 - b. Write a PL/SQL code block to calculate the area of a circle for a value of radius varying from 3 to 7. Store the radius and the corresponding values of calculated area in an empty table named areas, consisting of two columns radius andarea.
- 5. a. Write a PL/SQL program to accept a string and remove the vowels from the string. (When 'hello' passed to the program it should display 'Hll' removing e and o from the worldHello).
 - b. Write a PL/SQL program to accept a number and a divisor. Make sure the divisor is less than or equal to 10. Else display an error message. Otherwise Display the remainderin words.

Week-5: PROCEDURES AND FUNCTIONS

- 1. Write a function to accept employee number as parameter and return Basic +HRA together as single column.
- 2. Accept year as parameter and write a Function to return the total net salary spent for a givenyear.
- 3. Create a function to find the factorial of a given number and hence findNCR.
- 4. Write a PL/SQL block o pint prime Fibonacci series using localfunctions.
- 5. Create a procedure to find the lucky number of a given birthdate.
- 6. Create function to the reverse of givennumber

Week-6: TRIGGERS

1. Create a row level trigger for the customers table that would fire for INSERT or UPDATE or DELETE operations performed on the CUSTOMERS table. This trigger will display the salary difference between the old values and newvalues:

CUSTOMERS table:

ID	NAME	AGE	ADDRESS	SALARY
1	Alive	24	Khammam	2000
2	Bob	27	Kadappa	3000
3	Catri	25	Guntur	4000
4	Dena	28	Hyderabad	5000
5	Eeshwar	27	Kurnool	6000
6	Farooq	28	Nellore	7000

2. Creation of insert trigger, delete trigger, update trigger practice triggers using the passenger database.

Passenger(Passport_ id INTEGER PRIMARY KEY, Name VARCHAR (50) NotNULL, Age Integer Not NULL, Sex Char, Address VARCHAR (50) NotNULL);

- a. Write a Insert Trigger to check the Passport_id is exactly six digits ornot.
- b. Write a trigger on passenger to display messages '1 Record is inserted', '1 record is deleted', '1 record is updated' when insertion, deletion and updation are done on passengerrespectively.
- 3. Insert row in employee table using Triggers. Every trigger is created with name any trigger have same name must be replaced by new name. These triggers can raised before insert, update or delete rows on data base. The main difference between a trigger and a stored procedure is that the former is attached to a table and is only fired when an INSERT, UPDATE or DELETEoccurs.
- 4. Convert employee name into uppercase whenever an employee record is inserted or updated. Trigger to fire before the insert orupdate.
- 5. Trigger before deleting a record from emp table. Trigger will insert the row to be deleted into table called delete _emp and also record user who has deleted the record and date and time ofdelete.
- 6. Create a transparent audit system for a table CUST_MSTR. The system must keep track of the records that are being deleted orupdated

Week-7:PROCEDURES

- 1. Create the procedure for palindrome of givennumber.
- 2. Create the procedure for GCD: Program should load two registers with two Numbers and then apply the logic for GCD of two numbers. GCD of two numbers is performed by dividing the greater number by the smaller number till the remainder is zero. If it is zero, the divisor is the GCD if not the remainder and the divisors of the previous division are the new set of two numbers. The process is repeated by dividing greater of the two numbers by the smaller number till the remainder is zero and GCD isfound.
- 3. Write the PL/SQL programs to create the procedure for factorial of givennumber.
- 4. Write the PL/SQL programs to create the procedure to find sum of N naturalnumber.
- 5. Write the PL/SQL programs to create the procedure to find Fibonacciseries.
- 6. Write the PL/SQL programs to create the procedure to check the given number is perfect ornot

Week-8: CURSORS

- 1. Write a PL/SQL block that will display the name, dept no, salary of fist highest paidemployees.
- 2. Update the balance stock in the item master table each time a transaction takes place in the item transaction table. The change in item master table depends on the item id is already present in the item master then update operation is performed to decrease the balance stock by the quantity specified in the item transaction in case the item id is not present in the item master table then the record is inserted in the item mastertable.
- 3. Write a PL/SQL block that will display the employee details along with salary usingcursors.
- 4. To write a Cursor to display the list of employees who are working as a ManagersorAnalyst.
- 5. To write a Cursor to find employee with given job anddeptno.
- 6. Write a PL/SQL block using implicit cursor that will display message, the salaries of all the employees in the 'employee' table are updated. If none of the employee's salary are updated we getamessage 'None of the salaries were updated'. Else we get a message like for example, 'Salaries for 1000 employees are updated' if there are 1000 rows in 'employee' table

Week-9: CASE STUDY: BOOK PUBLISHING COMPANY

A publishing company produces scientific books on various subjects. The books are written by authors who specialize in one particular subject. The company employs editors who, not necessarily being specialists in a particular area, each take sole responsibility for editing one or more publications.

A publication covers essentially one of the specialist subjects and is normally written by a single author. When writing a particular book, each author works with on editor, but may submit another work for publication to be supervised by other editors. To improve their competitiveness, the company tries to employ a variety of authors, more than one author being a specialist in a particular subject for the above case study, do thefollowing:

- 1. Analyze the datarequired.
- 2. Normalize theattributes.

Create the logical data model using E-R diagrams

Week-10: CASE STUDY GENERAL HOSPITAL

AGeneralHospitalconsistsofanumberofspecializedwards(suchasMaternity,Pediatric,Oncology,

etc.). Each ward hosts a number of patients, who were admitted on the recommendation of their ownGP and confirmed by a consultant employed by the Hospital. On admission, the personal details of every patient are recorded. A separate register is to be held to store the information of the tests undertaken and the results of a prescribed treatment. A number of tests may be conducted for each patient. Each patient is assigned to one leading consultant but may be examined by another doctor, if required. Doctors are specialists in some branch of medicine and may be leading consultants for a number of patients, not necessarily from the same ward. For the above case study, do the following.

- 1. Analyze the datarequired.
- 2. Normalize theattributes.

Create the logical data model using E-R diagrams

Week-11: CASE STUDY: CAR RENTAL COMPANY

A database is to be designed for a car rental company. The information required includes a description of cars, subcontractors (i.e. garages), company expenditures, company revenues and customers. Cars are to be described by such data as: make, model, year of production, engine size, fuel type, number of passengers, registration number, purchase price, purchase date, rent price and insurance details. It is the company policy not to keep any car for a period exceeding one year. All major repairs and maintenance are done by subcontractors (i.e. franchised garages), with whom CRC has long-term agreements. Therefore the data about garages to be kept in the database includes garage names, addresses, range of services and the like. Some garages require payments immediately after a repair has been made; with others CRC has made arrangements for credit facilities. Company expenditures are to be registered for all outgoings connected with purchases, repairs, maintenance, insurance etc. Similarly the cash inflow coming from all sources: Car hire, car sales, insurance claims must be kept of file. CRC maintains a reasonably stable client base. For this privileged category of customers special creditcard facilities are provided. These customers may also book in advance a particular car. These reservations can be made for any period of time up to one month. Casual customers must pay a deposit for an estimated time of rental, unless they wish to pay by credit card. All major credit cards are accepted. Personal details such as name, address, telephone number, driving license, number about each customer are kept in the database. For the above case study, do thefollowing:

- 1. Analyze the datarequired.
- 2. Normalize theattributes.

Create the logical data model using E-R diagrams

Week-12: CASE STUDY: STUDENT PROGRESS MONITORING SYSTEM

A database is to be designed for a college to monitor students' progress throughout their course of study. The students are reading for a degree (such as BA, BA (Hons.) M.Sc., etc) within the framework of the modular system. The college provides a number of modules, each being

characterized by its code, title, credit value, module leader, teaching staff and the department they come from. A module is coordinated by a module leader who shares teaching duties with one or more lecturers. A lecturer may teach (and be a module leader for) more than one module. Students are free to choose any module they wish but the following rules must be observed: Some modules require pre- requisites modules and some degree programs have compulsory modules. The database is also to contain some information about studentsincludingtheirnumbers, names, addresses, degrees they readfor, and their pastperformance i.e. modules taken and examination results. For the above case study, do the following:

- 1. Analyze the datarequired.
- 2. Normalize theattributes.
- 3. Create the logical data model i.e., ERdiagrams.
- 4. Comprehend the data given in the case study by creating respective tables with primary keys and foreign keys whereverrequired.
- 5. Insert values into the tables created (Be vigilant about Master- Slavetables).
- 6. Display the Students who have taken M.Sccourse
- 7. Display the Module code and Number of Modules taught by eachLecturer.
- 8. Retrieve the Lecturer names who are not Module Leaders.
- 9. Display the Department name which offers 'English 'module.
- 10. Retrieve the Prerequisite Courses offered by every Department (with Departmentnames).
- 11. Present the Lecturer ID and Name who teaches' Mathematics'.
- 12. Discover the number of years a Module istaught.
- 13. List out all the Faculties who work for 'Statistics'Department.
- 14. List out the number of Modules taught by each ModuleLeader.
- 15. List out the number of Modules taught by a particularLecturer.
- 16. Create a view which contains the fields of both Department and Module tables. (Hint-The fields like Module code, title, credit, Department code and itsname).
- 17. Update the credits of all the prerequisite courses to 5. Delete the Module 'History' from the Moduletable.

References:

- 1. RamezElmasri, Shamkant, B. Navathe, "Database Systems", Pearson Education, 6th Edition, 2013.
- 2. Peter Rob, Carles Coronel, "Database System Concepts", Cengage Learning, 7th Edition, 2008.

Online Learning Resources/Virtual Labs:

http://www.scoopworld.in http://vlabs.iitb.ac.in/vlabs-dev/labs/dblab/index.php

0 0 3 1.5

20A05402P OPERATING SYSTEMS LAB

(Common to CSE, IT, CSE(DS), CSE (IoT), CSE (AI), CSE (AI & ML) and AI & DS)

Pre-requisite Basics of CO and DBMS

Course Objectives:

- To familiarize students with the architecture of OS.
- To provide necessary skills for developing and debugging CPU Scheduling algorithms.
- To elucidate the process management and scheduling and memory management.
- To explain the working of an OS as a resource manager, file system manager, process manager, memory manager, and page replacement tool.
- To provide insights into system calls, file systems and deadlock handling.

Course Outcomes (CO):

After completion of the course, students will be able to

- Trace different CPU Scheduling algorithms (L2).
- Implement Bankers Algorithms to Avoid and prevent the Dead Lock (L3).
- Evaluate Page replacement algorithms (L5).
- Illustrate the file organization techniques (L4).
- Illustrate shared memory process (L4).
- Design new scheduling algorithms (L6)

List of Experiments:

- 1. Practicing of Basic UNIX Commands.
- 2. Write programs using the following UNIX operating system calls

Fork, exec, getpid, exit, wait, close, stat, opendir and readdir

- 3. Simulate UNIX commands like cp, ls, grep, etc.,
- 4. Simulate the following CPU scheduling algorithms
 - a) Round Robin b) SJF c) FCFS d) Priority
- 5. Implement a dynamic priority scheduling algorithm.
- 6. Assume that there are five jobs with different weights ranging from 1 to 5. Implement round robin algorithm with time slice equivalent to weight.
- 7. Implement priority scheduling algorithm. While executing, no process should wait for more than 10 seconds. If the waiting time is more than 10 seconds that process has to be executed

for at least 1 second before waiting again.

- 8. Control the number of ports opened by the operating system with
 - a) Semaphore b) Monitors.
- 9. Simulate how parent and child processes use shared memory and address space.
- 10. Simulate sleeping barber problem.
- 11. Simulate dining philosopher's problem.
- 12. Simulate producer-consumer problem using threads.
- 13. Implement the following memory allocation methods for fixed partition
 - a) First fit b) Worst fit c) Best fit
- 14. Simulate the following page replacement algorithms
 - a) FIFO b) LRU c) LFU etc.,
- 15. Simulate Paging Technique of memory management
- 16. Simulate Bankers Algorithm for Dead Lock avoidance and prevention
- 17. Simulate the following file allocation strategies
 - a) Sequential b) Indexed c) Linked
- 18. Simulate all File Organization Techniques
 - a) Single level directory b) Two level c) Hierarchical d) DAG

References:

- "Operating System Concepts", Abraham Silberchatz, Peter B. Galvin, Greg Gagne, Eighth Edition, John Wiley.
- "Operating Systems: Internals and Design Principles", Stallings, Sixth Edition–2009, Pearson Education
- 3. "Modern Operating Systems", Andrew S Tanenbaum, Second Edition, PHI.
- 4. "Operating Systems", S.Haldar, A.A.Aravind, Pearson Education.
- 5. "Principles of Operating Systems", B.L.Stuart, Cengage learning, India Edition.2013-2014
- 6. "Operating Systems", A.S.Godbole, Second Edition, TMH.
- 7. "An Introduction to Operating Systems", P.C.P. Bhatt, PHI.

Online Learning Resources/Virtual Labs:

https://www.cse.iitb.ac.in/~mythili/os/

http://peterindia.net/OperatingSystems.html

0 0 3 1.5

20A30401P ARTIFICIAL INTELLIGENCE LAB

(Common to CSE (AI), CSE (AI & ML) and AI & DS)

Pre-requisite Fundamental Programming

Course Objectives:

- To teach the methods of implementing algorithms using artificial intelligence techniques
- To illustrate search algorithms
- To demonstrate the building of intelligent agents

Course Outcomes (CO):

After completion of the course, students will be able to

- Implement search algorithms
- Solve Artificial intelligence problems
- Design chatbot and virtual assistant

List of Experiments:

- 1. Write a program to implement DFS and BFS
- 2. Write a Program to find the solution for traveling salesman Problem
- 3. Write a program to implement Simulated Annealing Algorithm
- 4. Write a program to find the solution for the wumpus world problem
- 5. Write a program to implement 8 puzzle problem
- 6. Write a program to implement Towers of Hanoi problem
- 7. Write a program to implement A* Algorithm
- 8. Write a program to implement Hill Climbing Algorithm
- 9. Build a Chatbot using AWS Lex, Pandora bots.
- 10. Build a bot that provides all the information related to your college.
- 11. Build a virtual assistant for Wikipedia using Wolfram Alpha and Python

12. The following is a function that counts the number of times a string occurs in another string:

Count the number of times string s1 is found in string s2

def countsubstring(s1,s2):

count = 0

for i in range(0,len(s2)-len(s1)+1):
if s1 == s2[i:i+len(s1)]:
count += 1
return count

For instance, countsubstring('ab', 'cabalaba') returns 2.

Write a recursive version of the above function. To get the rest of a string (i.e. everything but the first character).

13. Higher order functions. Write a higher-order function count that counts the number of elements in a list that satisfy a given test. For instance: count (lambda x: x>2, [1, 2, 3, 4, 5]) should return 3, as there are three elements in the list larger than 2. Solve this task without using any existing higher-order function.

14. Brute force solution to the Knapsack problem. Write a function that allows you to generate random problem instances for the knapsack program. This function should generate a list of items containing N items that each have a unique name, a random size in the range 1 5 and a random value in the range 1..... 10.

Next, you should perform performance measurements to see how long the given knapsack solver take to solve different problem sizes. You should perform at least 10 runs with different randomly generated problem instances for the problem sizes 10,12,14,16,18,20 and 22. Use abackpack size of 2:5 x N for each value problem size N. Please note that the method used togenerate random numbers can also affect performance, since different distributions of values can make the initial conditions of the problem slightly more or less demanding.

How much longer time does it take to run this program when we increase the number of items? Does the backpack size affect the answer?

Try running the above tests again with a backpack size of 1 x N and with 4:0 x N.

15. Assume that you are organising a party for N people and have been given a list L of people who, for social reasons, should not sit at the same table. Furthermore, assume that you have C tables (that are infinitely large).

Write a function layout (N,C,L) that can give a table placement (i.e. a number from 0 : : : C -

1) for each guest such that there will be no social mishaps.

For simplicity we assume that you have a unique number $0 \dots N-1$ for each guest and that the list of restrictions is of the form $[(X, Y) \dots]$ denoting guests X, Y that are not allowed to sit together. Answer with a dictionary mapping each guest into a table assignment, if there are no possible layouts of the guests you should answer False.

References:

- 1. David Poole, Alan Mackworth, Randy Goebel,"Computational Intelligence: a logical approach", Oxford University Press, 2004.
- 2. G. Luger, "Artificial Intelligence: Structures and Strategies for complex problem solving", Fourth Edition, Pearson Education, 2002.
- 3. J. Nilsson, "Artificial Intelligence: A new Synthesis", Elsevier Publishers, 1998.
- 4. Artificial Neural Networks, B. Yagna Narayana, PHI
- 5. Artificial Intelligence, 2nd Edition, E.Rich and K.Knight, TMH.
- 6. Artificial Intelligence and Expert Systems, Patterson, PHI.

Online Learning Resources/Virtual Labs:

https://www.tensorflow.org/

https://pytorch.org/

https://github.com/pytorch

https://keras.io/

https://github.com/keras-team

http://deeplearning.net/software/theano/

https://github.com/Theano/Theano

https://caffe2.ai/

https://github.com/caffe2

https://deeplearning4j.org/Scikit-learn:https://scikit-learn.org/stable/

https://github.com/scikit-learn/scikit-learn

https://www.deeplearning.ai/

https://opencv.org/

https://github.com/qqwweee/keras-yolo3

https://www.pyimagesearch.com/2018/11/12/yolo-object-detection-with-opencv/

https://developer.nvidia.com/cuda-math-library

20A05404 Exploratory Data Analytics with R

(Common to CSE, CSE (AI), CSE (AI & ML) and AI& DS)

Pre-requisite Fundamental Programming

Course Objectives:

The students will be able to learn:

- How to manipulate data within R and to create simple graphs and charts used in introductory statistics.
- The given data using different distribution functions in R.
- The hypothesis testing and calculate confidence intervals; perform linear regression models for data analysis.
- The relevance and importance of the theory in solving practical problems in the real world.

Course Outcomes (CO):

After completion of the course, students will be able to

- Install and use R for simple programming tasks.
- Extend the functionality of R by using add-on packages
- Extract data from files and other sources and perform various data manipulation tasks on them.
- Explore statistical functions in R.
- Use R Graphics and Tables to visualize results of various statistical operations on data.
- Apply the knowledge of R gained to data Analytics for real-life applications.

List of Experiments:

1: INTRODUCTION TO COMPUTING

- a. Installation of R
- b. The basics of R syntax, workspace
- c. Matrices and lists
- d. Subsetting
- e. System-defined functions; the help system
- f. Errors and warnings; coherence of the workspace

2: GETTING USED TO R: DESCRIBING DATA

- a. Viewing and manipulating Data
- b. Plotting data
- c. Reading the data from console, file (.csv) local disk and web
- d. Working with larger datasets

3: SHAPE OF DATA AND DESCRIBING RELATIONSHIPS

- a. Tables, charts and plots.
- b. Univariate data, measures of central tendency, frequency distributions, variation, and Shape.
- c. Multivariate data, relationships between a categorical and a continuous variable,

d. Relationship between two continuous variables – covariance, correlation coefficients, comparing multiple correlations.

e. Visualization methods – categorical and continuous variables, two categorical variables, two continuous variables.

4: PROBABILITY DISTRIBUTIONS

a. Sampling from distributions – Binomial distribution, normal distribution

- b. tTest, zTest, Chi Square test
- c. Density functions

d. Data Visualization using ggplot – Box plot, histograms, scatter plotter, line chart, bar chart, heat maps

5: EXPLORATORY DATA ANALYSIS Demonstrate the range, summary, mean, variance, median, standard deviation, histogram, box plot, scatter plot using population dataset.

6: TESTING HYPOTHESES

- a. Null hypothesis significance testing
- b. Testing the mean of one sample
- c. Testing two means

7: PREDICTING CONTINUOUS VARIABLES

- a. Linear models
- b. Simple linear regression
- c. Multiple regression
- d. Bias-variance trade-off cross-validation

8: CORRELATION

- a. How to calculate the correlation between two variables.
- b. How to make scatter plots.
- c. Use the scatter plot to investigate the relationship between two variables

9: TESTS OF HYPOTHESES

- a. Perform tests of hypotheses about the mean when the variance is known.
- b. Compute the p-value.
- c. Explore the connection between the critical region, the test statistic, and the p-value

10: ESTIMATING A LINEAR RELATIONSHIP Demonstration on a Statistical Model for a Linear Relationship

- a. Least Squares Estimates
- b. The R Function Im
- c. Scrutinizing the Residuals

11: APPLY-TYPE FUNCTIONS

- a. Defining user defined classes and operations, Models and methods in R
- b. Customizing the user's environment
- c. Conditional statements
- d. Loops and iterations

12: STATISTICAL FUNCTIONS IN R

a. Write Demonstrate Statistical functions in R

b. Statistical inference, contingency tables, chi-square goodness of fit, regression, generalized linear models, advanced modeling methods.

References:

1. SandipRakshit, "Statistics with R Programming", McGraw Hill Education, 2018.

2. Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, "AN Introduction to Statistical Learning: with Applications in R", Springer Texts in Statistics, 2017.

3. Joseph Schmuller, "Statistical Analysis with R for Dummies", Wiley, 2017.

4. K G Srinivasa, G M Siddesh, ChetanShetty, Sowmya B J, "Statistical Programming in R", Oxford Higher Education, 2017.

Online Learning Resources/Virtual Labs:

1. www.oikostat.ch

- 2. https://learningstatisticswithr.com/
- 3. https://www.coursera.org/learn/probability-intro#syllabus
- 4. https://www.isibang.ac.in/~athreya/psweur/

20A99401 Design Thinking for Innovation (Common to All branches of Engineering)

Course Objectives:

The objective of this course is to familiarize students with design thinking process as a tool for breakthrough innovation. It aims to equip students with design thinking skills and ignite the minds to create innovative ideas, develop solutions for real-time problems.

Course Outcomes (CO):

- Define the concepts related to design thinking.
- Explain the fundamentals of Design Thinking and innovation
- Apply the design thinking techniques for solving problems in various sectors.
- Analyse to work in a multidisciplinary environment
- Evaluate the value of creativity
- Formulate specific problem statements of real time issues

UNIT - I Introduction to Design Thinking

Introduction to elements and principles of Design, basics of design-dot, line, shape, form as fundamental design components. Principles of design. Introduction to design thinking, history of Design Thinking, New materials in Industry.

UNIT - II Design Thinking Process

Design thinking process (empathize, analyze, idea & prototype), implementing the process in driving inventions, design thinking in social innovations. Tools of design thinking - person, costumer, journey map, brain storming, product development

Activity: Every student presents their idea in three minutes, Every student can present design process in the form of flow diagram or flow chart etc. Every student should explain about product development.

UNIT - III Innovation

Art of innovation, Difference between innovation and creativity, role of creativity and innovation in organizations. Creativity to Innovation. Teams for innovation, Measuring the impact and value of creativity.

Activity: Debate on innovation and creativity, Flow and planning from idea to innovation, Debate on value-based innovation.

UNIT - IV Product Design

Problem formation, introduction to product design, Product strategies, Product value, Product planning, product specifications. Innovation towards product design Case studies.

Activity: Importance of modelling, how to set specifications, Explaining their own product design.

UNIT - V Design Thinking in Business Processes

Design Thinking applied in Business & Strategic Innovation, Design Thinking principles that redefine business – Business challenges: Growth, Predictability, Change, Maintaining Relevance, Extreme competition, Standardization. Design thinking to meet corporate needs. Design thinking for Startups. Defining and testing Business Models and Business Cases. Developing & testing prototypes.

Activity: How to market our own product, About maintenance, Reliability and plan for startup.

Textbooks:

1. Change by design, Tim Brown, Harper Bollins (2009)

2. Design Thinking for Strategic Innovation, Idris Mootee, 2013, John Wiley & Sons.

Reference Books:

1. Design Thinking in the Classroom by David Lee, Ulysses press

8 Hrs

10 Hrs

8 Hrs

10 Hrs

10 Hrs

2. Design the Future, by Shrrutin N Shetty, Norton Press3. Universal principles of design- William lidwell, kritinaholden, Jill butter.

4. The era of open innovation – chesbrough.H

Online Learning Resources:

https://nptel.ac.in/courses/110/106/110106124/ https://nptel.ac.in/courses/109/104/109104109/ https://swayam.gov.in/nd1_noc19_mg60/preview

COMMUNITY SERVICE PROJECT

.....Experiential learning through community engagement

Introduction

- Community Service Project is an experiential learning strategy that integrates meaningful community service with instruction, participation, learning and community development
- Community Service Project involves students in community development and service activities and applies the experience to personal and academic development.
- Community Service Project is meant to link the community with the college for mutual benefit. The community will be benefited with the focused contribution of the college students for the village/ local development. The college finds an opportunity to develop social sensibility and responsibility among students and also emerge as a socially responsible institution.

Objective

Community Service Project should be an integral part of the curriculum, as an alternative to the 2 months of Summer Internships / Apprenticeships / On the Job Training, whenever there is an exigency when students cannot pursue their summer internships. The specific objectives are;

- To sensitize the students to the living conditions of the people who are around them,
- To help students to realize the stark realities of the society.
- To bring about an attitudinal change in the students and help them to develop societal consciousness, sensibility, responsibility and accountability
- To make students aware of their inner strength and help them to find new /out of box solutions to the social problems.
- To make students socially responsible citizens who are sensitive to the needs of the disadvantaged sections.
- To help students to initiate developmental activities in the community in coordination with public and government authorities.
- To develop a holistic life perspective among the students by making them study culture, traditions, habits, lifestyles, resource utilization, wastages and its management, social problems, public administration system and the roles and responsibilities of different persons across different social systems.

Implementation of Community Service Project

- Every student should put in a 6 weeksfor the Community Service Project during the summer vacation.
- Each class/section should be assigned with a mentor.
- Specific Departments could concentrate on their major areas of concern. For example, Dept. of Computer Science can take up activities related to Computer Literacy to different sections of people like youth, women, house-wives, etc
- A log book has to be maintained by each of the student, where the activities undertaken/involved to be recorded.
- The logbook has to be countersigned by the concerned mentor/faculty incharge.
- Evaluation to be done based on the active participation of the student and grade could be awarded by the mentor/faculty member.
- The final evaluation to be reflected in the grade memo of the student.
- The Community Service Project should be different from the regular programmes of NSS/NCC/Green Corps/Red Ribbon Club, etc.
- Minor project report should be submitted by each student. An internal Viva shall also be conducted by a committee constituted by the principal of the college.
- Award of marks shall be made as per the guidelines of Internship/apprentice/ on the job training

Procedure

- A group of students or even a single student could be assigned for a particular habitation or village or municipal ward, as far as possible, in the near vicinity of their place of stay, so as to enable them to commute from their residence and return back by evening or so.
- The Community Service Project is a twofold one -
 - First, the student/s could conduct a survey of the habitation, if necessary, in terms of their own domain or subject area. Or it can even be a general survey, incorporating all the different areas. A common survey format could be designed. This should not be viewed as a duplication of work by the Village or Ward volunteers, rather, it could be another primary source of data.
 - Secondly, the student/s could take up a social activity, concerning their domain or subject area. The different areas, could be like –
 - Agriculture
 - Health
 - Marketing and Cooperation
 - Animal Husbandry
 - Horticulture
 - Fisheries
 - Sericulture
 - Revenue and Survey
 - Natural Disaster Management
 - Irrigation
 - Law & Order
 - Excise and Prohibition
 - Mines and Geology
 - Energy
 - Internet
 - Free Electricity
 - Drinking Water

EXPECTED OUTCOMES

BENEFITS OF COMMUNITY SERVICE PROJECT TO STUDENTS

Learning Outcomes

- Positive impact on students' academic learning
- Improves students' ability to apply what they have learned in "the real world"
- Positive impact on academic outcomes such as demonstrated complexity of understanding, problem analysis, problem-solving, critical thinking, and cognitive development
- Improved ability to understand complexity and ambiguity

Personal Outcomes

- Greater sense of personal efficacy, personal identity, spiritual growth, and moral development
- Greater interpersonal development, particularly the ability to work well with others, and build leadership and communication skills

Social Outcomes

- Reduced stereotypes and greater inter-cultural understanding
- Improved social responsibility and citizenship skills
- Greater involvement in community service after graduation

Career Development

- Connections with professionals and community members for learning and career opportunities
- Greater academic learning, leadership skills, and personal efficacy can lead to greater opportunity

Relationship with the Institution

- Stronger relationships with faculty
- Greater satisfaction with college
- Improved graduation rates

BENEFITS OF COMMUNITY SERVICE PROJECT TO FACULTY MEMBERS

- Satisfaction with the quality of student learning
- New avenues for research and publication via new relationships between faculty and community
- Providing networking opportunities with engaged faculty in other disciplines or institutions
- A stronger commitment to one's research

BENEFITS OF COMMUNITY SERVICE PROJECT TO COLLEGES AND UNIVERSITIES

- Improved institutional commitment
- Improved student retention
- Enhanced community relations

BENEFITS OF COMMUNITY SERVICE PROJECT TO COMMUNITY

- Satisfaction with student participation
- Valuable human resources needed to achieve community goals
- New energy, enthusiasm and perspectives applied to community work
- Enhanced community-university relations.

SUGGESTIVE LIST OF PROGRAMMES UNDER COMMUNITY SERVICE PROJECT

The following the recommended list of projects for Engineering students. The lists are not exhaustive and open for additions, deletions and modifications. Colleges are expected to focus on specific local issues for this kind of projects. The students are expected to carry out these projects with involvement, commitment, responsibility and accountability. The mentors of a group of students should take the responsibility of motivating, facilitating, and guiding the students. They have to interact with local leadership and people and appraise the objectives and benefits of this kind of projects. The project reports shall be placed in the college website for reference. Systematic, Factual, methodical and honest reporting shall be ensured.

For Engineering Students

- 1. Water facilities and drinking water availability
- 2. Health and hygiene
- 3. Stress levels and coping mechanisms
- 4. Health intervention programmes
- 5. Horticulture
- 6. Herbal plants
- 7. Botanical survey
- 8. Zoological survey
- 9. Marine products
- 10. Aqua culture
- 11. Inland fisheries
- 12. Animals and species
- 13. Nutrition
- 14. Traditional health care methods
- 15. Food habits
- 16. Air pollution
- **17.** Water pollution
- 18. Plantation
- **19. Soil protection**
- 20. Renewable energy
- 21. Plant diseases
- 22. Yoga awareness and practice
- 23. Health care awareness programmes and their impact
- 24. Use of chemicals on fruits and vegetables
- 25. Organic farming
- 26. Crop rotation
- 27. Floury culture
- 28. Access to safe drinking water
- 29. Geographical survey
- **30.** Geological survey
- 31. Sericulture
- 32. Study of species
- **33. Food adulteration**
- 34. Incidence of Diabetes and other chronic diseases
- 35. Human genetics
- 36. Blood groups and blood levels
- **37. Internet Usage in Villages**
- 38. Android Phone usage by different people
- 39. Utilisation of free electricity to farmers and related issues
- 40. Gender ration in schooling lvel- observation.

Complimenting the community service project the students may be involved to take up some awareness campaigns on social issues/special groups. The suggested list of programmes are;

Programmes for School Children

- 1. Reading Skill Programme (Reading Competition)
- 2. Preparation of Study Materials for the next class.
- 3. Personality / Leadership Development
- 4. Career Guidance for X class students
- 5. Screening Documentary and other educational films
- 6. Awareness Programme on Good Touch and Bad Touch (Sexual abuse)
- 7. Awareness Programme on Socially relevant themes.

Programmes for Women Empowerment

- 1. Government Guidelines and Policy Guidelines
- 2. Womens' Rights
- 3. Domestic Violence
- 4. Prevention and Control of Cancer
- 5. Promotion of Social Entrepreneurship

General Camps

- 1. General Medical camps
- 2. Eye Camps
- 3. Dental Camps

- 4. Importance of protected drinking water
- 5. ODF awareness camp
- 6. Swatch Bharath
- 7. AIDS awareness camp
- 8. Anti Plastic Awareness
- 9. Programmes on Environment
- 10. Health and Hygiene
- 11. Hand wash programmes
- 12. Commemoration and Celebration of important days

Programmes for Youth Empowerment

- 1. Leadership
- 2. Anti-alcoholism and Drug addiction
- 3. Anti-tobacco
- 4. Awareness on Competitive Examinations
- 5. Personality Development

Common Programmes

- 1. Awareness on RTI
- 2. Health intervention programmes
- 3. Yoga
- 4. Tree plantation
- 5. Programmes in consonance with the Govt. Departments like
 - i. Agriculture
 - ii. Health
 - iii. Marketing and Cooperation
 - iv. Animal Husbandry
 - v. Horticulture
 - vi. Fisheries
 - vii. Sericulture
 - viii. Revenue and Survey
 - ix. Natural Disaster Management
 - x. Irrigation
 - xi. Law & Order
 - xii. Excise and Prohibition
 - xiii. Mines and Geology
 - xiv. Energy

Role of Students:

- Students may not have the expertise to conduct all the programmes on their own. The students then can play a facilitator role.
- For conducting special camps like Health related, they will be coordinating with the Governmental agencies.
- As and when required the College faculty themselves act as Resource Persons.
- Students can work in close association with Non-Governmental Organizations like Lions Club, Rotary Club, etc or with any NGO actively working in that habitation.
- And also with the Governmental Departments. If the programme is rolled out, the District Administration could be roped in for the successful deployment of the programme.
- An in-house training and induction programme could be arranged for the faculty and participating students, to expose them to the methodology of Service Learning.

Timeline for the Community Service Project Activity

Duration: 8 weeks

1. Preliminary Survey (One Week)

- A preliminary survey including the socio-economic conditions of the allotted habitation to be conducted.
- A survey form based on the type of habitation to be prepared before visiting the habitation with the help of social sciences faculty. (However, a template could be designed for different habitations, rural/urban.
- The Governmental agencies, like revenue administration, corporation and municipal authorities and village secreteriats could be aligned for the survey.

2. Community Awareness Campaigns (One Week)

• Based on the survey and the specific requirements of the habitation, different awareness campaigns and programmes to be conducted, spread over two weeks of time. The list of activities suggested could be taken into consideration.

3. Community Immersion Programme (Three Weeks)

Along with the Community Awareness Programmes, the student batch can also work with any one of the below listed governmental agencies and work in tandem with them. This community involvement programme will involve the students in exposing themselves to the experiential learning about the community and its dynamics. Programmes could be in consonance with the Govt. Departments.

4. Community Exit Report (One Week)

• During the last week of the Community Service Project, a detailed report of the outcome of the 8 weeks work to be drafted and a copy shall be submitted to the local administration. This report will be a basis for the next batch of students visiting that particular habitation. The same report submitted to the teacher-mentor will be evaluated by the mentor and suitable marks are awarded for onward submission to the University.

Throughout the Community Service Project, a daily log-book need to be maintained by the students batch, which should be countersigned by the governmental agency representative and the teachermentor, who is required to periodically visit the students and guide them.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech CSE (AI&ML)– III-I Sem LTPC

3 0 0 3

(20A30502a) SOFTWARE ENGINEERING FOR AI

Course Objectives:

- Study the concepts of software engineering
- Understand the issues in development of AI software
- Explore the methods for AI software development
- Discuss the concepts of Machine learning and Expert systems
- Demonstrate the use of AI in Software development

Course Outcomes:

After completion of the course, students will be able to

- Understand the methods and issues in software engineering
- Apply the principles of Artificial Intelligence for Software engineering
- Design AI based software
- Apply the Algorithms of Machine learning in solving problems
- Design Expert systems

UNIT I

Introduction to Computer Software for AI, AI Lecture Hrs 12 Problems and Conventional SE Problems, Software **Engineering Methodology**

Computers and software systems, An introduction to Software engineering, Bridges and buildings versus software systems, The software crisis, A demand for more software power, Responsiveness to human users, Software systems in new types of domains, Responsiveness to dynamic usage environments, Software systems with self-maintenance capabilities, A need for Al systems

What is an AI problem, Ill-defined specifications, correct versus 'good enough' solutions, It's the HOW not the WHAT, the problem of dynamics, The quality of modular approximations, Context-free problems?

Specify and verify—the SAV methodology, the myth of complete specification, what is verifiable, Specify and test—the SAT methodology, testing for reliability, the strengths, the weaknesses, what are the requirements for testing, what's in a specification, Prototyping as a link

UNIT II An Incremental and Exploratory Methodology, New Lecture Hrs 8 **Paradigms for System Engineering**

Classical methodology and AI problems, The RUDE cycle, how do we start, Malleable software, AI muscles on a conventional skeleton How do we proceed, how do we finish, The question of hacking, Conventional paradigms

Automatic programming, Transformational implementation, The "new paradigm" of Blazer, Cheatham and Green, Operational requirements of Kowalski, The POLITE methodology

UNIT III Towards a Discipline of Exploratory Programming, Lecture Hrs 8 Machine Learning: Much Promise, Many Problems

Reverse engineering, Reusable software Design knowledge, Stepwise abstraction, The problem of decompiling, Controlled modification, Structured growth

Self-adaptive software, The promise of increased software power, The threat of increased software problems

UNIT IV Machine Learning and Expert Systems Practical machine learning examples, Multisession inductive programming, Expert Systems: The Success Story, Expert systems as Al software, Engineering expert systems, The lessons of expert systems for engineering Al software

UNIT V AI into Practical Software Lecture Hrs: 8 Support environments, Reduction of effective complexity,Moderately stupid assistance, An engineering toolbox, Self-reflective software, Overengineering software, Summary and What the Future Holds

Textbooks:

1) Derek Partridge, "Artificial Intelligence and Software Engineering", Glenlake Publishing Company, 1998.

Reference Books:

1) Charles Rich and Richard C. Waters, Readings in Artificial Intelligence and Sofrware Engineering, Morgan Kaufmann, 2014.

2) Farid Meziane & Sunil Vadera, "Artificial Intelligence Applications for Improved Software Engineering Development", Information Science Reference, 2009

Online Learning Resources:

1) Software Engineering: Software Engineering - Course (nptel.ac.in)

2) Software Engineering: Software Engineering Tutorial - javatpoint

3) Coursera: Saeed Aghabozorgi, IBM AI Engineering Professional Certificate course(s), https://www.coursera.org/professional-certificates/ai-engineer

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech CSE (AI&ML)– III-I Sem L T P C

3 0 0 3

(20A05602T) MACHINE LEARNING Common to CSE, IT, CSD, CSE(AI),CSE(AI&ML),CSE(DS),AI&DS,CSE(IOT)

Course Objectives:

The course is introduced for students to

- Understand basic concepts of Machine Learning
- Study different learning algorithms
- Illustrate evaluation of learning algorithms

Course Outcomes (CO):

After completion of the course, students will be able to

- Identify machine learning techniques suitable for a given problem
- Solve the problems using various machine learning techniques
- Design application using machine learning techniques

UNIT – I Introduction to Machine Learning & Preparing to Model Lecture 9Hrs Introduction: What is Human Learning? Types of Human Learning, what is Machine Learning?Types of Machine Learning, Problems Not to Be Solved Using Machine Learning, Applications of Machine Learning, State-of-The-Art Languages/Tools in Machine Learning, Issues in Machine Learning

Preparing to Model: Introduction, Machine Learning Activities, Basic Types of Data in Machine Learning, Exploring Structure of Data, Data Quality and Remediation, Data Pre-Processing

UNIT – II **Modelling and Evaluation &Basics of Feature Engineering** Lecture 9Hrs Introduction, selecting a Model, training a Model (for Supervised Learning), Model Representation and Interpretability, Evaluating Performance of a Model, Improving Performance of a Model Basics of Feature Engineering: Introduction, Feature Transformation, Feature Subset Selection

UNIT – III **Bayesian Concept Learning & Supervised Learning: Classification** Lecture 10Hrs Introduction, Why Bayesian Methods are Important? Bayes' Theorem, Bayes' Theorem and Concept Learning, Bayesian Belief Network

Supervised Learning: Classification: Introduction, Example of Supervised Learning, Classification Model, Classification Learning Steps, Common Classification Algorithms-*k*-Nearest Neighbour(*k*NN), Decision tree, Random forest model, Support vector machines

UNIT – IV **Supervised Learning: Regression** Lecture 10Hrs Introduction, Example of Regression, Common Regression Algorithms-Simple linear regression, Multiple linear regression, Assumptions in Regression Analysis, Main Problems in Regression Analysis, Improving Accuracy of the Linear Regression Model, Polynomial Regression Model, Logistic Regression, Maximum Likelihood Estimation.

UNIT – V Unsupervised LearningLecture 9Hrs

Introduction, Unsupervised vs Supervised Learning, Application of Unsupervised Learning, Clustering – Clustering as a machine learning task, Different types of clustering techniques, Partitioning methods,

K-Medoids: a representative object-based technique, Hierarchical clustering, Density-based methods-DBSCAN

Finding Pattern using Association Rule- Definition of common terms, Association rule, Theapriori algorithm for association rule learning, Build the aprioriprinciplerules

Textbooks:

1. Machine Learning, SaikatDutt, Subramanian Chandramouli, Amit Kumar Das, Pearson, 2019.

Reference Books:

- 1. EthernAlpaydin, "Introduction to Machine Learning", MIT Press, 2004.
- 2. Stephen Marsland, "Machine Learning -An Algorithmic Perspective", Second Edition, Chapman and Hall/CRC Machine Learning and Pattern Recognition Series, 2014.
- 1. Andreas C. Müller and Sarah Guido "Introduction to Machine Learning with Python: A Guide for Data Scientists", Oreilly.

Online Learning Resources:

- Andrew Ng, "Machine Learning Yearning"
- https://www.deeplearning.ai/machine-learning- yearning/
- Shai Shalev-Shwartz , Shai Ben-David, "Understanding Machine Learning: From Theory to Algorithms" , Cambridge University Press <u>https://www.cse.huji.ac.il/~shais/UnderstandingMachineLearning/index.html</u>

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech CSE (AI&ML)– III-I Sem L T P C 3 0 0 3

(20A05703c) DEEP LEARNING

Course Objectives:

- Demonstrate the major technology trends driving Deep Learning
- Build, train, and apply fully connected deep neural networks
- Implement efficient (vectorized) neural networks
- Analyse the key parameters and hyper parameters in a neural network's architecture

Course Outcomes:

After completion of the course, students will be able to

- Demonstrate the mathematical foundation of neural network
- Describe the machine learning basics
- Differentiate architecture of deep neural network
- Build a convolutional neural network
- Build and train RNN and LSTMs

UNIT I

Linear Algebra: Scalars, Vectors, Matrices and Tensors, Matrix operations, types of matrices, Norms, Eigen decomposition, Singular Value Decomposition, Principal Components Analysis.

Probability and Information Theory: Random Variables, Probability Distributions, Marginal Probability, Conditional Probability, Expectation, Variance and Covariance, Bayes' Rule, Information Theory. Numerical Computation: Overflow and Underflow, Gradient-Based Optimization, Constrained Optimization, Linear Least Squares.

UNIT II

Lecture 9Hrs

Lecture 8Hrs

Lecture 8Hrs

Machine Learning: Basics and Under fitting, Hyper parameters and Validation Sets, Estimators, Bias and Variance, Maximum Likelihood, Bayesian Statistics, Supervised and Unsupervised Learning, Stochastic Gradient Descent, Challenges Motivating Deep Learning. Deep Feed forward Networks: Learning XOR, Gradient-Based Learning, Hidden Units, Architecture Design, Back-Propagation and other Differentiation Algorithms.

UNIT III

Regularization for Deep Learning: Parameter Norm Penalties, Norm Penalties as Constrained Optimization, Regularization and Under-Constrained Problems, Dataset Augmentation, Noise Robustness, Semi-Supervised Learning, Multi-Task Learning, Early Stopping, Parameter Tying and Parameter Sharing, Sparse Representations, Bagging and Other Ensemble Methods, Dropout, Adversarial Training, Tangent Distance, Tangent Prop and Manifold Tangent Classifier. Optimization for Training Deep Models: Pure Optimization, Challenges in Neural Network Optimization, Basic Algorithms, Parameter Initialization Strategies, Algorithms with Adaptive Learning Rates, Approximate Second-Order Methods, Optimization Strategies and Meta-Algorithms.

UNIT IV

Convolutional Networks: The Convolution Operation, Pooling, Convolution, Basic Convolution Functions, Structured Outputs, Data Types, Efficient Convolution Algorithms, Random or Unsupervised Features, Basis for Convolutional Networks.

UNIT V

Lecture 8Hrs

Lecture 9Hrs

Sequence Modeling: Recurrent and Recursive Nets: Unfolding Computational Graphs, Recurrent Neural Networks, Bidirectional RNNs, Encoder-Decoder Sequence-to-Sequence Architectures, Deep Recurrent Networks, Recursive Neural Networks, Echo State Networks, LSTM, Gated RNNs, Optimization for Long-Term Dependencies, Auto encoders, Deep Generative Models.

Textbooks:

1. Ian Goodfellow, YoshuaBengio, Aaron Courville, "Deep Learning", MIT Press, 2016.

2. Josh Patterson and Adam Gibson, "Deep learning: A practitioner's approach", O'Reilly Media, First Edition, 2017.

Reference Books:

- 1. Fundamentals of Deep Learning, Designing next-generation machine intelligence algorithms, Nikhil Buduma, O'Reilly, Shroff Publishers, 2019.
- 2. Deep learning Cook Book, Practical recipes to get started Quickly, DouweOsinga, O'Reilly, Shroff Publishers, 2019.

Online Learning Resources:

- https://keras.io/datasets/
- http://deeplearning.net/tutorial/deeplearning.pdf
- https://arxiv.org/pdf/1404.7828v4.pdf
- https://www.cse.iitm.ac.in/~miteshk/CS7015.html
- https://www.deeplearningbook.org
- <u>https://nptel.ac.in/courses/106105215</u>

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech CSE (AI&ML)- III-I Sem LTPC 3 0 0 3

(20A05504c)BIG DATA TECHNOLOGIES Common to CSE, IT, CSE(AI), CSE(AI&ML), AI&DS

(Professional Elective Course-I)

Course Objectives:

To learn the big data characteristics, study challenges and Hadoop framework to handle big data.

Course Outcomes:

After completion of the course, students will be able to

- Understand the elements of Big data
- Use different technologies to tame Big Data
- Process Given data using Map Reduce
- Develop applications using Hive, NoSQL.

Getting an Overview of Big Data: Introduction to Big Data, Structuring Big Data, Elements of Big Data, Big Data Analytics. Exploring the use of Big Data in Business Context Use of Big Data in Social Networking, Use of Big Data Preventing Fraudulent Activities, Use of Big Data in Retail Industry

UNIT II

Lecture 9Hrs

Lecture 8Hrs

Introducing Technologies for Handling Big Data Distributed and Parallel Computing for Big Data, Introducing Hadoop, Cloud Computing and Big Data, In-memory Computing Technology for Big Data.

Understanding Hadoop Ecosystem Hadoop Ecosystem, Hadoop Distributed File System, Map Reduce, Hadoop YARN, Introducing HBase, Combining HBase and HDFS, Hive, Pig and Pig Latin, Sqoop, ZooKeeper, Flume, Oozie.

UNIT III

Lecture 9Hrs

Understanding Map Reduce Fundamentals and H Base The Map Reduce Framework, Techniques to Optimize Map Reduce Jobs, Uses of Map Reduce, Role of H Base in Big Data Processing. Processing Your Data with Map Reduce Recollecting he Concept of Map Reduce Framework, Developing Simple Map Reduce Application, Points to Consider while Designing Map Reduce.

UNIT I

UNIT IV

Lecture 8Hrs

Customizing Map Reduce Execution and Implementing Map Reduce Program Controllong Map Reduce Execution with Input Format, Reading Data with Custom Record Reader, Organizing Output Data with Output Formats, Customizing Data with Record Writer, Customizing the Map Reduce Execution in Terms of YARN, Implementing a Map Reduce Program for Sorting Text Data.

Testing and Debugging Map Reduce Application Debugging Hadoop Map Reduce Locally, Performing Unit Testing for Map Reduce Applications.

UNIT V

Lecture 8Hrs

Exploring Hive: Introducing Hive, Hive Service, Built-In Functions in Hive, Hive DDl, Data Manipulation in Hive, Data Retrieval Queries, Using JOINS in Hive.

NoSQL Data Management Introduction to NoSQL, Types of NoSQL Data Models, Schema-Less Databases, Materialized Views, Distribution Models, Sharding.

Textbooks:

1. Big Data Black Book, DT Editorial services, Dreamtech Press

Reference Books:

- 1. Data Science for Business by F. Provost and T. Fawcett, O'Reilly Media.
- 2. Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced
- 3. Hadoop: The Definitive Guide by Tom White, O'Reilly Media.
- 4. Big Data and Business Analytics by Jay Liebowitz, Auerbach Publications, CRC Press.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech CSE (AI&ML)– III-I Sem L T P C 3 0 0 3

(20A05501T) COMPUTER NETWORKS

Common to CSE, IT, CSD, CSE(AI), CSE(AI&ML), AI&DS, CSE(IOT)

PROFESSIONAL ELCTIVE COURSE - I

Course Objectives:

The course is designed to

- Understand the basic concepts of Computer Networks.
- Introduce the layered approach for design of computer networks
- Expose the network protocols used in Internet environment
- Explain the format of headers of IP, TCP and UDP
- Familiarize with the applications of Internet
- Elucidate the design issues for a computer network

Course Outcomes (CO):

After completion of the course, students will be able to

- Identify the software and hardware components of a computer network
- Design software for a computer network
- Develop new routing, and congestion control algorithms
- Assess critically the existing routing protocols
- Explain the functionality of each layer of a computer network
- Choose the appropriate transport protocol based on the application requirements

UNIT I Computer Networks and the Internet Lecture 8Hrs

What Is the Internet? The Network Edge, The Network Core, Delay, Loss, and Throughput in Packet-Switched Networks(Textbook 2), Reference Models, Example Networks, Guided Transmission Media, Wireless Transmission(Textbook 1) Data Link Layer Design Issues, Error Detection and Correction, Elementary Data Link Protocols, Sliding Window Protocols (Textbook 1) Introduction to the Link Layer, Error-Detection and - Correction Techniques, Multiple Access Links and Protocols, Switched Local Area Networks

Link Virtualization: A Network as a Link Layer, Data Center Networking, Retrospective: A Day in the Life of a Web Page Request (Textbook 2)

UNIT III The Network Layer

Routing Algorithms, Internetworking, The Network Layer in The Internet (Textbook 1)

UNIT IV The Transport Layer

Connectionless Transport: UDP (Textbook 2), The Internet Transport Protocols: TCP, Congestion Control (Textbook 1)

UNIT V Principles of Network Applications Lecture 8Hrs

Principles of Network Applications, The Web and HTTP, Electronic Mail in the Internet, DNS—The Internet's Directory Service, Peer-to-Peer Applications Video Streaming and Content Distribution Networks (Textbook 2)

Textbooks:

- 1. Andrew S.Tanenbaum, David j.wetherall, Computer Networks, 5th Edition, PEARSON.
- 2. James F. Kurose, Keith W. Ross, "Computer Networking: A Top-Down Approach", 6th edition, Pearson, 2019.

Reference Books:

- 1. Forouzan, Datacommunications and Networking, 5th Edition, McGraw Hill Publication.
- 2. Youlu Zheng, Shakil Akthar, "Networks for Computer Scientists and Engineers", Oxford Publishers, 2016.

Online Learning Resources:

https://nptel.ac.in/courses/106105183/25

http://www.nptelvideos.in/2012/11/computer-networks.html

https://nptel.ac.in/courses/106105183/3

Lecture 8Hrs

Lecture 9Hrs

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech CSE (AI&ML)– III-I Sem 2 0 0 3

(20A31501a) ROBOTICS PROCESS AUTOMATION Professional Elective Course– I

Course Objectives:

- Describe Intelligent Automation and its impact on the transformation of business
- Study the technologies and best practices used to enable process automation
- Identify areas where Intelligent Automation is applicable and formulate its value (quantify and qualify).

Course Outcomes (CO):

After completion of the course, students will be able to

- Outline the benefits of RPA and various platforms available on the market.
- Describe RPA, where it can be applied and how it's implemented.
- Identify and understand different types of variables, Image, Text and Data Tables Automation.
- Understand the Deployment of the Robot and to maintain the connection.
- Describe how to handle the User Events and various types of Exceptions and strategies.

UNIT I RPA Foundations& RPA Skills

What Is RPA? Flavors of RPA History of RPA, The Benefits of RPA, The Downsides of RPA, RPA Compared to BPO, BPM, and BPA, Consumer Willingness for Automation, The Workforce of the Future.

RPA Skills: On-Premise Vs. the Cloud, Web Technology, Programming Languages and Low Code, OCR (Optical Character Recognition), Databases,

APIs (Application Programming Interfaces), AI (Artificial Intelligence), Cognitive Automation, Agile, Scrum, Kanban, and Waterfall, DevOps, Flowcharts

UNIT II Process Methodologies & Planning

Lean, Six Sigma, How to Implement Six Sigma, Six Sigma Roles and Levels, Lean Six Sigma, Finding the Right Balance, Applying Lean and Six Sigma to RPA.

Planning: The Preliminaries, Use a Consulting Firm?

RPA Consulting: Some Case Studies, What to Automate? ROI for RPA, RPA Use Cases, The Plan

UNIT III RPA Vendor Evaluation & Center of Excellence (CoE) Lecture 8Hrs

Be Realistic, Check Out Third Parties, Minimum Capabilities, Who Is the User?, Funding, Ecosystem, Costs, Training and Education, Support, Best-of-Breed vs. End-to-End, Thought Leadership and Vision, Industry Expertise, Security, Monitoring, and Deployment, What Type of RPA?, The Design, Next-Generation Technologies

Center of Excellence (CoE): What Is the CoE? Why Have a CoE? Forming the Team, Business Analyst, Developer, RPA Solution Architect, RPA Supervisor, What Should a CoE Do? Communication, Change Management, CoE Case Study: Intuit

Lecture 8Hrs

Lecture 9Hrs

UNIT IV Bot Development, Deployment and Monitoring & Data Preparation Lecture 10Hrs Preliminaries, Installation of UiPath, Getting Started, Activities, Flowcharts and Sequences, Log Message, Variables, Loops and Conditionals, For Each Loop, Do While Loop and While Loop, IF/THEN/ELSE Conditionals, Switch, Debug, Common UiPath Functions, The UiPath Orchestrator, Best Practices for Bot Development

Deployment and Monitoring: Testing, Going into Production, Monitoring, Security, Scaling Data Preparation: Types of Data, Big Data, The Issues with Big Data, The Data Process, Types of Algorithms, The Perils of the Moonshot, Bias

UNIT V Open Source RPA, Process Mining & Future of RPA Lecture 9 Hrs What Is Open Source Software?, The Business Model of Open Source?, The Pros and Cons of Open Source Software, Open RPA, UI. Vision, Robot Framework, Robocorp, Orchestra, TagUI Process Mining: Old Way Vs. Process Mining, Backgrounder on Process Mining, How Process Mining Works, Celonis, ProM, Signavio, Fluxicon, ABBYY, The Future of Process Mining Future of RPA: Consolidation and IPOs, Microsoft, Attended Automation, Vertical-Specific Companies, Hype Factor, Software-as-a-Service (SaaS) and Open Source, Chatbots, Artificial Intelligence, Privacy and Ethics.

Textbooks:

1. Tom Taulli, "The Robotic Process Automation Handbook", Apress, 2020 **Reference Books:**

- 1. Alok Mani Tripathi, "Learning Robotic Process Automation", March 2018
- 2. Robotic process and Cognitive Automation by, Mary C Lacity& Leslie P Willcocks, 2018.

Online Learning Resources:

- 1. https://www.uipath.com/rpa/robotic-process-automation
- 2. https://www.academy.uipath.com

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech CSE (AI&ML)– III-I Sem L T P C

0 0 3 1.5

(20A05602P) MACHINE LEARNING LAB Common to CSE, CSD,CSE(AI),CSE(AI&ML),CSE(DS),AI&DS

Course Objectives:

- Make use of Data sets in implementing the machine learning algorithms
- Implement the machine learning concepts and algorithms in any suitable language of choice.

Course Outcomes (CO):

After completion of the course, students will be able to

- Understand the Mathematical and statistical prospectives of machine learning algorithms through python programming
- Appreciate the importance of visualization in the data analytics solution.
- Derive insights using Machine learning algorithms

List of Experiments:

Note:

- a. The programs can be implemented in either JAVA or Python.
- b. For Problems 1 to 6 and 10, programs are to be developed without using the built-in classes or APIs of Java/Python.
- c. Data sets can be taken from standard repositories (https://archive.ics.uci.edu/ml/datasets.html) or constructed by the students.
- 1. Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on a given set of training data samples. Read the training data from a .CSV file.
- 2. For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples.
- 3. Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.
- 4. Build an Artificial Neural Network by implementing the Back-propagation algorithm and test the same using appropriate data sets.
- 5. Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.
- 6. Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the accuracy, precision, and recall for your data set.
- 7. Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API.
- 8. Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set for clustering using k-Means algorithm. Compare the results of these two algorithms and comment on the quality of clustering. You can add Java/Python ML library classes/API in the program.
- 9. Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem.
- 10. Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs.

Projects

- 1. Predicting the Sale price of a house using Linear regression
- 2. Spam classification using Naïve Bayes algorithm
- 3. Predict car sale prices using Artificial Neural Networks

- 4. Predict Stock market trends using LSTM
- 5. Detecting faces from images

References:

1. Python Machine Learning Workbook for beginners, AI Publishing, 2020.

Online Learning Resources/Virtual Labs:

- 1) Machine Learning A-Z (Python & R in Data Science Course) | Udemy
- 2) Machine Learning | Coursera

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech CSE (AI&ML)– III-I Sem L T P C 0 0 3 1.5

(20A31502) DEEP LEARNING LAB

Course Objectives:

- Understand the context of Neural networks and deep learning.
- Introduce major Deep learning algorithms, the problem settings, and their applications to solve real world problems

Course Outcomes (CO):

After completion of the course, students will be able to

- Identify the Deep learning algorithms which are more appropriate for various types of learning tasks in various domains
- Implementing Deep learning algorithms and solve real-world problems.

List of Experiments:

- 1. Introduction of Keras.
- 2. Installing Keras and packages in Keras.
- 3. Train the model to add two numbers and report the result.
- 4. Train the model to multiply two matrices and report the result using keras.
- 5. Train the model to print the prime numbers using Keras
- 6. Recurrent Neural Network
 - a. Numpy implement of a simple recurrent neural network
 - b. Create a recurrent layer in keras
 - c. Prepare IMDB data for movie review classification problem.
 - d. Train the model with embedding and simple RNN layers.
 - e. Plot the Results
- 7. Consider temperature-forecast as one the example for recurrent neural network and implement the following.
 - a. Inspect the data of the weather dataset
 - b. Parsing the data
 - c. Plotting the temperature timeseries
 - d. Plotting the first 10 days of the temperature timeseries
- 8. Long short-term memory network
 - a. Implement LSTM using LSTM layer in keras
 - b. Train and evaluate using reversed sequences for IMDB data
 - c. Train and evaluate a bidirectional LSTM for IMDB data

Train and evaluate a Gated Recurrent Unit based model

- a. By using GRU layer
- b. By adding dropout and recurrent dropout to GRU layer.
- c. Train a bidirectional GRU for temperature prediction data
- Convolutional Neural Networks
 - a. Preparing the IMDB data
 - b. Train and evaluate a simple 1D convent on IMDB Data
 - c. Train and evaluate a simple 1D convent on temperature prediction data
- Develop a traditional LSTM for sequence classification problem.

PROJECTS:

1)Write a program for Multilabel Movie Poster Classification.

2)Write a program for Predicting Bike-Sharing patterns

References:

1) Ian Goodfellow, YoshuaBengio, Aaraon Courville, "Deep Learning (Adaptive Computation and Machine Learning series)", MIT Press, 2016.

Online Learning Resources/Virtual Labs:

<u>Introduction to Deep Learning Course | Introduction to Deep Learning Course (rses-dl-course.github.io)</u>
<u>Deep Learning | Introduction to Long Short Term Memory - GeeksforGeeks</u>

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR L T P C B.Tech CSE (AI&ML)- III-I Sem

1 0 2 2

(20A30503) WEB APPLICATION DESIGN **Skill Oriented Course - III**

Course Objectives:

- Explore the programming aspects of Web •
- Teach concepts related to client side and server-side programming
- Understand Full Stack Development •

Course Outcomes (CO):

After completion of the course, students will be able to

- Develop Client-side applications
- Develop Server-side applications
- Connect to Databases
- Design comprehensive web applications •

Activities:

Module 1:

Introduction, MERN Components: React, Node.js, Express, MongoDB, Tools and Libraries, Why MERN? JavaScript Everywhere, JSON Everywhere, Node.js Performance, The npm Ecosystem Isomorphic, It's Not a Framework!

Hello World: Server-Less Hello World, Server Setup, Build-Time JSX Compilation

Task: Create a simple Hello world web page using node.js and express.

Module 2:

React Components, Issue Tracker, React Classes, Composing Components, Passing Data Using Properties, Passing Data Using Children, Dynamic Composition.

React State, Async State Initialization, Event Handling, communicating from child to parent, Stateless Components, Designing Components: State vs. Props, Component Hierarchy, Communication, Stateless Components.

Task: Create the Issue Tracker Application: -

1. The user should be able to view a list of issues, with an ability to filter the list by various parameters.

2. The user should be able to add new issues, by supplying the initial values of the issue's fields.

3. The user should be able to edit and update an issue by changing its field values.

4. The user should be able delete an issue.

5. An issue should have following attributes: A title that summarizes the issue (freeform long text), An owner to whom the issue is assigned (freeform short text), A status indicator (a list of possible status values). Creation date (a date, automatically assigned). Effort required to address the issue (number of days, a number), Estimated completion date or due date (a date, optional)

Module 3:

Express REST APIs, REST: Resource Based, HTTP Methods as Actions, JSON, Express: Routing, Handler Function, Middleware, The List API: Automatic Server Restart, Testing. The Create API, Using the List API, Using the Create API, Error Handling.

Task : Create a Issues API to

1. Show the list of Issues which are sorted according to creation date.

- 2. To create the new Issue.
- 3. To delete the existing Issue title.
- 4. To update the existing Issue.

Module 4:

MongoDB Basics: Documents, Collections, Databases, Query Language, Installation, The mongo Shell, Shell Scripting, Schema Initialization, MongoDB Node.js Driver, Reading from MongoDB, Writing to MongoDB.

Task : Develop the Student Management API to store the student data into Database :-

- 1. To add the new students.
- 2. To remove the existing student.
- 3. To update the existing student details.
- 4. To list all the students.
- 5. To list all the students based on Roll Number or any unique ID or Age.

6. The student should have the following attributes:- Name , Date of Birth , Branch , Year of Study , Address , Roll Number or any unique ID.

Module 5:

Modularization and Webpack: Server-Side Modules, Introduction to Webpack, Using Webpack Manually, Transform and Bundle, Libraries Bundle, Hot Module Replacement, HMR using Middleware, Debugging, Server-Side ES2015, ESLint.

Routing with React Router : Routing Techniques, Simple Routing, Route Parameters, Route Query String, Programmatic Navigation, Nested Routes, Browser History.

Forms: More Filters in the List API, Filter Form, The Get API, Edit Page, UI Components: Number Input, Data Input, Update API, Using the Update API, Delete API, Using the Delete API. React-Bootstrap: Bootstrap Installation, Navigation, Table and Panel, Forms: Grid-Based Forms, Inline Forms, Horizontal Forms, Alerts: Validations, Results, Modals.

Task: Develop the Student Management System website for the College.

- 1. The admins should be able to Sign In, Sign out from the website.
- 2. The admin should be able to see the Dashboard after successful sign in.
- 3. The Dashboard should contain the Add Student, Delete Student, Update Student, List Student.
- 4. The admin should able filter the students based on branch or Roll Number or Date of Birth.

Task: Develop the Bookstore Library Website:

1. It should contain the 2 interfaces: User and Admin Interface.

2. User should be able do the following:

- browse books from the library
- filter them based on category, author, publications etc.
- Rent them for a specific duration
- Like/Review them
- 3. Admin should be able do the following:
 - List/manage books
 - Track rented books and their availability

4. Deploy the application in Netlify.

References:

1. VasanSubramanian , Pro MERN Stack: Full Stack Web App Development with Mongo, Express, React, and Node, APress, 2nd Edition, 2019.

Online Learning Resources/Virtual Labs:

- 1. <u>https://nodejs.org/en/</u>
- 2. https://expressjs.com/
- 3. https://www.mongodb.com/
- 4. https://reactjs.org/
- 5. https://www.netlify.com/

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech CSE (AI&ML)- III-I Sem LTPC 3 0 0 0

20A99201 ENVIRONMENTAL SCIENCE

(Common to All Branches of Engineering)

Course Objectives:

- To make the students to get awareness on environment
- To understand the importance of protecting natural resources, ecosystems for future generations and pollution causes due to the day to day activities of human life
- To save earth from the inventions by the engineers.

Course Outcomes (CO):

At the end of the course, the student will be able to

- Grasp multidisciplinary nature of environmental studies and various renewable and nonrenewable resources.
- Understand flow and bio-geo- chemical cycles and ecological pyramids.
- Understand various causes of pollution and solid waste management and related preventive • measures.
- About the rainwater harvesting, watershed management, ozone layer depletion and waste land reclamation.
- Casus of population explosion, value education and welfare programmes.

UNIT - I

Multidisciplinary Nature Of Environmental Studies: - Definition, Scope and Importance - Need for Public Awareness.

Natural Resources : Renewable and non-renewable resources - Natural resources and associated problems - Forest resources - Use and over - exploitation, deforestation, case studies - Timber extraction – Mining, dams and other effects on forest and tribal people – Water resources – Use and over utilization of surface and ground water - Floods, drought, conflicts over water, dams - benefits and problems - Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies - Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies. - Energy resources: UNIT - II

12 Hrs

8 Hrs

Ecosystems: Concept of an ecosystem. – Structure and function of an ecosystem – Producers, consumers and decomposers – Energy flow in the ecosystem – Ecological succession – Food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the following ecosystem:

- Forest ecosystem. a.
- Grassland ecosystem b.
- Desert ecosystem c.
- Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries) d.

Biodiversity And Its Conservation : Introduction 0 Definition: genetic, species and ecosystem diversity - Bio-geographical classification of India - Value of biodiversity: consumptive use, Productive use, social, ethical, aesthetic and option values - Biodiversity at global, National and local levels - India as a mega-diversity nation - Hot-sports of biodiversity - Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts - Endangered and endemic species of India - Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

UNIT - III

Environmental Pollution: Definition, Cause, effects and control measures of :

- Air Pollution. a.
- Water pollution b.
- c. Soil pollution
- Marine pollution d.
- Noise pollution e.

8 Hrs

- f. Thermal pollution
- Nuclear hazards g.

Solid Waste Management: Causes, effects and control measures of urban and industrial wastes – Role of an individual in prevention of pollution - Pollution case studies - Disaster management: floods, earthquake, cyclone and landslides. UNIT - IV

10 Hrs

Social Issues and the Environment: From Unsustainable to Sustainable development – Urban problems related to energy - Water conservation, rain water harvesting, watershed management -Resettlement and rehabilitation of people; its problems and concerns. Case studies - Environmental ethics: Issues and possible solutions - Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case Studies - Wasteland reclamation. - Consumerism and waste products. - Environment Protection Act. - Air (Prevention and Control of Pollution) Act. - Water (Prevention and control of Pollution) Act – Wildlife Protection Act – Forest Conservation Act – Issues involved in enforcement of environmental legislation - Public awareness. UNIT - V

8 Hrs

Human Population And The Environment: Population growth, variation among nations. Population explosion - Family Welfare Programmes. - Environment and human health - Human Rights - Value Education – HIV/AIDS – Women and Child Welfare – Role of information Technology in Environment and human health – Case studies.

Field Work: Visit to a local area to document environmental assets River/forest grassland/hill/mountain - Visit to a local polluted site-Urban/Rural/Industrial/Agricultural Study of common plants, insects, and birds – river, hill slopes, etc..

Textbooks:

- 1. Text book of Environmental Studies for Undergraduate Courses ErachBharucha for University Grants Commission, Universities Press.
- 2. Palaniswamy, "Environmental Studies", Pearson education
- 3. S.AzeemUnnisa, "Environmental Studies" Academic Publishing Company
- 4. K.Raghavan Nambiar, "Text book of Environmental Studies for Undergraduate Courses as per UGC model syllabus", Scitech Publications (India), Pvt. Ltd.

Reference Books:

- 1. Deeksha Dave and E.Sai Baba Reddy, "Textbook of Environmental Science", Cengage Publications.
- 2. M.Anji Reddy, "Text book of Environmental Sciences and Technology", BS Publication.
- 3. J.P.Sharma, Comprehensive Environmental studies, Laxmi publications.
- 4. J. Glynn Henry and Gary W. Heinke, "Environmental Sciences and Engineering", Prentice hall of India Private limited
- 5. G.R.Chatwal, "A Text Book of Environmental Studies" Himalaya Publishing House
- 6. Gilbert M. Masters and Wendell P. Ela, "Introduction to Environmental Engineering and Science, Prentice hall of India Private limited.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech CSE (AI&ML)- III-II Sem LTPC

(20A05702c) NATURAL LANGUAGE PROCESSING

Course Objectives:

- Explain and apply fundamental algorithms and techniques in the area of natural language processing • (NLP)
- Understand approaches to syntax and semantics in NLP.
- Understand current methods for statistical approaches to machine translation.
- Understand language modeling.

Understand machine learning techniques used in NLP. •

Course Outcomes (CO):

After completion of the course, students will be able to

- Understand the logic behind Natural languages
- Understand the significance of syntax and semantics of natural languages
- Process the Natural languages
- Verify the syntax and semantics of languages
- Design new natural languages

Introduction to Natural language UNIT – I

The Study of Language, Applications of NLP, Evaluating Language Understanding Systems, Different Levels of Language Analysis, Representations and Understanding, Organization of Natural language Understanding Systems, Linguistic Background: An outline of English Syntax.

UNIT - II **Grammars and Parsing**

Grammars and Parsing- Top- Down and Bottom-Up Parsers, Transition Network Grammars, Feature Systems and Augmented Grammars, Morphological Analysis and the Lexicon, Parsing with Features, Augmented Transition Networks, Bayes Rule, Shannon game, Entropy and Cross Entropy.

Grammars for Natural Language UNIT - III

Grammars for Natural Language, Movement Phenomenon in Language, Handling questions in Context Free Grammars, Hold Mechanisms in ATNs, Gap Threading, Human Preferences in Parsing, Shift Reduce Parsers, Deterministic Parsers.

Interpretation and Modelling UNIT - IV

Semantic Interpretation-Semantic & Logical form, Word senses & ambiguity, the basic logical form language, encoding ambiguity in the logical Form, Verbs & States in logical form, Thematic roles, Speech acts &embedded sentences, Defining semantics structure model theory.

Language Modelling-Introduction, n-Gram Models, Language model Evaluation, Parameter Estimation, Language Model Adaption, Types of Language Models, Language-Specific Modelling Problems, Multilingual and Cross lingual Language Modelling.

Machine Translation and Multilingual Information UNIT - V

Machine Translation Survey: Introduction, Problems of Machine Translation, Is Machine Translation Possible. Brief History, Possible Approaches, Current Status. Anusaraka or Language Accessor: Background, Cutting the Gordian Knot, The Problem, Structure of Anusaraka System, User Interface, Linguistic Area, Giving up Agreement in Anusaraka Output, Language Bridges.

Multilingual Information Retrieval - Introduction, Document Pre-processing, Monolingual Information Retrieval, CLIR, MLIR, Evaluation in Information Retrieval, Tools, Software and Resources.

Multilingual Automatic Summarization - Introduction, Approaches to Summarization, Evaluation, How to Build a Summarizer, Competitions and Datasets.

Textbooks:

- 1. James Allen, Natural Language Understanding, 2nd Edition, 2003, Pearson Education.
- 2. Multilingual Natural Language Processing Applications: From Theory to Practice-Daniel M.Bikel and ImedZitouni, Pearson Publications.
- 3. Natural Language Processing, A paninian perspective, Akshar Bharathi, Vineet Chaitanya, Prentice Hall of India.

Reference Books:

1. Charniack, Eugene, Statistical Language Learning, MIT Press, 1993.

Lecture 9Hrs

Lecture 8Hrs

Lecture 8Hrs

Lecture9 Hrs

Lecture 9Hrs

3 0 0 3

- 2. Jurafsky, Dan and Martin, James, Speech and Language Processing, 2nd Edition, Prentice Hall, 2008.
- 3. Manning, Christopher and Henrich, Schutze, Foundations of Statistical Natural Language Processing, MIT Press, 1999.

Online Learning Resources: http://peterindia.net/AILinks.html

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech CSE (AI&ML)- III-II Sem LTPC

3 0 0 3

(20A33601T) ADVANCED MACHINE LEARNING

Course Objectives:

The course is introduced for students to

- Study different advanced machine learning algorithms
- Discuss about evaluation of learning algorithms
- Explore Python concepts related to machine learning

Course Outcomes (CO):

After completion of the course, students will be able to

- Use Deep belief networks and CNN
- Identify machine learning techniques suitable for a given problem
- Solve the problems using various machine learning techniques •
- Apply Feature Engineering •
- Design application using machine learning techniques

Unsupervised Machine Learning & Deep Belief Networks UNIT - I Lecture 8 Hrs

Principal component analysis, Introducing K-means clustering, self-organizing maps. Deep Belief Networks: Neural networks - a primer, composition of a neural network, network topologies, Restricted Boltzmann Machine, Introducing the RBM, Applications of the RBM, Further applications of the RBM, Deep belief Networks-Training a DBN, Applying the DBN, Validating the DBN

UNIT -IIStacked Denoising Autoencoders & Convolutional Neural NetworksLecture 9 Hrs

Autoencoders, Introducing the autoencoder, Topology, Training, Denoising autoencoders, ApplyingadA, Stacked Denoising Autoencoders, Applying the SdA, Assessing SdA performance

Convolutional Neural Networks: Introduction to CNN, Understanding the convnet topology, understanding convent layers and pooling layers, training a convent, Applying a CNN

UNIT - III Semi-Supervised Learning & Text Feature Engineering Lecture 9 Hrs

Introduction, understanding semi-supervised learning, Semi-supervised algorithms in action, Self-training, implementing self-training, Finessing your self-training implementation, Contrastive Pessimistic Likelihood Estimation

Text Feature Engineering: Introduction, Text feature engineering, Cleaning text data, Text cleaning with Beautiful Soup, managing punctuation and tokenizing, Tagging and categorizing words, creating features from text data, stemming, Bagging and random forests, Testing our prepared data

UNIT - IV Feature Engineering Lecture 9 Hrs

Introduction, creating a feature set, Engineering features for ML applications, using rescaling techniques to improve the learnability of features, creating effective derived variables, reinterpreting non-numeric features, using feature selection techniques, Performing feature selection, Feature engineering in practice, Acquiring data via RESTful APIs, Testing the performance of our model, Twitter, Deriving and selecting variables using feature engineering techniques

UNIT -VEnsemble Methods & Additional Python Machine Learning ToolsLecture 8 Hrs

Introducing ensembles, understanding averaging ensembles, using bagging algorithms, using random forests, applying boosting methods, Using XGBoost, Using stacking ensembles, Applying ensembles in practice, Using models in dynamic applications, Understanding model robustness, Identifying modeling risk factors, Strategies to managing model robustness

Additional Python Machine Learning Tools: Alternative development tools, Introduction to Lasagne, getting to know Lasagne, Introduction to Tensor flow, knowing when to use these libraries

Textbooks:

1. John Hearty, Advanced Machine Learning with Python, Packt Publishing Ltd, 2016.

Reference Books:

- 1. T.M. Mitchell, "Machine Learning", McGraw-Hill, 1997.
- 2. Machine Learning, SaikatDutt, Subramanian Chandramouli, Amit Kumar Das, Pearson, 2019.

Online Learning Resources:www.packtpub.com

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech CSE (AI&ML)– III-II Sem L T P C

3 0 0 3

(20A05701a) CLOUD COMPUTING Common to CSE,IT, CSD, CSE(AI), CSE(AI&ML), CSE(DS), AI&DS

Course Objectives:

- To explain the evolving computer model called cloud computing.
- To introduce the various levels of services that can be achieved by cloud.
- To describe the security aspects in cloud.

Course Outcomes (CO):

After completion of the course, students will be able to

- Ability to create cloud computing environment
- Ability to design applications for Cloud environment
- Design & amp; develop backup strategies for cloud data based on features.
- Use and Examine different cloud computing services.
- Apply different cloud programming model as per need.

UNIT - I Basics of Cloud computing

Lecture 8Hrs

Introduction to cloud computing: Introduction, Characteristics of cloud computing, Cloud Models, Cloud Services Examples, Cloud Based services and applications

Cloud concepts and Technologies: Virtualization, Load balancing, Scalability and Elasticity, Deployment, Replication, Monitoring, Software defined, Network function virtualization, Map Reduce, Identity and Access Management, services level Agreements, Billing.

Cloud Services and Platforms: Compute Services, Storage Services, Database Services, Application services, Content delivery services, Analytics Services, Deployment and Management Services, Identity and Access Management services, Open Source Private Cloud software.

UNIT - II Hadoop and Python

Lecture 9Hrs

Hadoop MapReduce: Apache Hadoop, Hadoop Map Reduce Job Execution, Hadoop Schedulers, Hadoop Cluster setup.

Cloud Application Design: Reference Architecture for Cloud Applications, Cloud Application Design Methodologies, Data Storage Approaches.

Python Basics: Introduction, Installing Python, Python data Types & amp; Data Structures, Control flow, Function, Modules, Packages, File handling, Date/Time Operations, Classes.

UNIT - IIIPython for Cloud computingLecture 8HrsPython for Cloud:Python for Amazon web services, Python for Google Cloud Platform, Pythonfor windows Azure,Python for MapReduce, Python packages of Interest, Python web ApplicationFrame work,Designing a RESTful web API.

Cloud Application Development in Python: Design Approaches, Image Processing APP, Document Storage App, MapReduce App, Social Media Analytics App.

UNIT - IVBig data, multimedia and TuningLecture 8HrsBig Data Analytics:Introduction, Clustering Big Data, Classification of Big data Recommendationof Systems.

Multimedia Cloud: Introduction, Case Study: Live video Streaming App, Streaming Protocols, case Study: Video Transcoding App.

Cloud Application Benchmarking and Tuning: Introduction, Workload Characteristics, Application Performance Metrics, Design Considerations for a Benchmarking Methodology, Benchmarking Tools, Deployment Prototyping, Load Testing & Bottleneck Detection case Study, Hadoop benchmarking case Study.

UNIT - VApplications and Issues in CloudLecture 9 HrsCloud Security:Introduction, CSA Cloud Security Architecture, Authentication, Authorization,Identity Access Management, Data Security, Key Management, Auditing.

Cloud for Industry, Healthcare &Education: Cloud Computing for Healthcare, Cloud computing for Energy Systems, Cloud Computing for Transportation Systems, Cloud Computing for Manufacturing Industry, Cloud computing for Education.

Migrating into a Cloud: Introduction, Broad Approaches to migrating into the cloud, the seven-

step model of migration into a cloud.

Organizational readiness and Change Management in The Cloud Age: Introduction, Basic concepts of Organizational Readiness, Drivers for changes: A frame work to comprehend the competitive environment, common change management models, change management maturity models, Organizational readiness self – assessment.

Legal Issues in Cloud Computing: Introduction, Data Privacy and security Issues, cloud contracting models, Jurisdictional issues raised by virtualization and data location, commercial and business considerations, Special Topics.

Textbooks:

1. Cloud computing A hands-on Approach By ArshdeepBahga, Vijay Madisetti, Universities Press, 2016

2. Cloud Computing Principles and Paradigms: By Raj Kumar Buyya, James Broberg, Andrzej Goscinski, Wiley, 2016

Reference Books:

- 1. Mastering Cloud Computing by Rajkumar Buyya, Christian Vecchiola, SThamaraiSelvi, TMH
- 2. Cloud computing A Hands-On Approach by ArshdeepBahga and Vijay Madisetti.
- 3. Cloud Computing: A Practical Approach, Anthony T. Velte, Toby J. Velte, Robert Elsenpeter, Tata McGraw Hill, rp2011.
- 4. Enterprise Cloud Computing, Gautam Shroff, Cambridge University Press, 2010.
- 5. Cloud Application Architectures: Building Applications and Infrastructure in the Cloud, George Reese, O 'Reilly, SPD, rp2011.
- 6. Essentials of Cloud Computing by K. Chandrasekaran. CRC Press.

Online Learning Resources:

Cloud computing - Course (nptel.ac.in)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech CSE (AI&ML)- III-II Sem LTPC

3 0 0 3

(20A31601a) ROBOTICS (Professional Elective Course-II)

Course Objectives:

- Discuss the basics of Robotics
- Understand the working of Robots •

Demonstrate the building of Robots

Course Outcomes:

- Ability to process end effectors and robotic controls.
- Analyze Robot Transformations and Sensors •
- Able to understand Robot cell design and applications

UNIT I Introduction

Robot anatomy-Definition, law of robotics, History and Terminology of Robotics-Accuracy and repeatability of Robotics-Simple problems Specifications of Robot-Speed of Robot-Robot joints and links-Robot Classifications-Architecture of robotic systems

Lecture 9 Hrs UNIT II **End Effectors and Robot Controls** Mechanical grippers-Slider crank mechanism, Screw type, Rotary actuators, cam type-Magnetic grippers-Vacuum grippers-Air operated grippers-Gripper force analysitims-Gripper design-Simple problems-Robot controls-Point to point control, Continuous path control, Intelligent robot Control system for robot joint-Control actions-Feedback devices-Encoder, Resolver, LVDTMotion Interpolations-Adaptive control.

Robot Transformations and Sensors UNIT III Robot Transformations and Sensors: Robot Kinematics-Types- 2D, 3D Transformation-Scaling, Rotation, Translation- Homogeneous coordinates, multiple transformation-Simple problems. Sensors in robot - Touch Sensors-Tactile sensor - Proximity and range sensors - Robotic vision sensor-Force Sensor-Light sensors, Pressure sensors.

UNIT IV Robot Cell Design and Applications Lecture 8 Hrs Robot work cell design and control-Sequence control, Operator interface, Safety monitoring devices in Robot-Mobile robot working principle, actuation using MATLAB, NXT Software Introductions-Robot applications Material handling, Machine loading and unloading, assembly, Inspection, Welding, Spray painting and undersea robot.

UNIT V **Micro/Nano Robotics System** Lecture 9 Hrs Micro/Nanorobotics system overview-Scaling Effect-Top down and bottom up approach Actuators of Micro/Nano robotics system-Nano robot communication techniques-Fabrication of micro/nano grippers-Wall climbing micro robot working principles-Biomimetic robot-Swarm robot-Nano robot in targeted drug delivery system

Textbooks:

1.S.R. Deb, Robotics Technology and flexible automation, Tata McGraw-Hill Education., 2009 2. Mikell P Groover & Nicholas G Odrey, Mitchel Weiss, Roger N Nagel, Ashish Dutta, Industrial Robotics, Technology programming and Applications, McGraw Hill, 2012.

Reference Books:

1.Carl D. Crane and Joseph Duffy, Kinematic Analysis of Robot manipulators, Cambridge University press, 2008.

2. Fu. K. S., Gonzalez. R. C. & Lee C.S.G., "Robotics control, sensing, vision and intelligence", McGraw Hill Book co, 1987

3. Craig. J. J. "Introduction to Robotics mechanics and control", Addison- Wesley, 1999.

4. Ray Asfahl. C., "Robots and Manufacturing Automation", John Wiley & Sons Inc., 1985.

Online Learning Resources:

1. Robotics | Coursera

2. Introduction to robotics - Course (nptel.ac.in)

Lecture 9 Hrs

Lecture 9 Hrs

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech CSE (AI&ML)- III-II Sem LTPC

3 0 0 3

(20A33602a) AUTOMATION OF MODEL BUILDING (Professional Elective Course-II

Course Objectives:

To train students with in-depth and advanced knowledge to become professional and capable of identifying, analyzing and solving complex problems in the areas of Automation Engineering.

Course Outcomes (CO):

After completion of the course, students will be able to

- Acquire, demonstrate and apply advanced knowledge in the area of Automation engineering.
- Identify problems in the field of Automation engineering, formulate them and solve by using advanced • techniques.
- Apply engineering and scientific principles for the effective management of Automation systems. •

Lecture 8Hrs UNIT I

Introduction to AutoML: Scope of machine learning, what is AutoML? Why use AutoML and how does it help? When do you automate ML? What will you learn? Core components of AutoML system, Building prototype subsystems for each component. Putting it all together as end & end AutoML System Overview of AutoML libraries.

UNIT - II Lecture 9Hrs

Introduction to Machine Learning Using Python: Technical requirements, Machine learning, Linear regression, What is linear regression? important evaluation metrics regression algorithms, Logistic regression, Important evaluation metrics, classification algorithms, Decision trees, Support Vector Machines, k-Nearest Neighbours, Ensemble methods, Comparing the results of classifiers, Cross-validation: Clustering.

UNIT - III Lecture 9Hrs

Data Preprocessing: Technical requirements, Data transformation, Numerical data transformation, Categorical data transformation, Text Preprocessing, Feature selection, Feature generation.

Automated Algorithm Selection: Technical requirements, Computational complexity, Differences in training and scoring time, Linearity versus non-linearity, Necessary feature transformations, supervised ML, Unsupervised AutoML.

UNIT - IV Lecture 8Hrs

Hyperparameter Optimization: Technical requirements, Hyperparameters, Warm start, Bayesian-based hyperparameter tuning, An example system

Creating AutoML Pipelines: Technical requirements, An introduction to machine learning pipelines, A simple pipeline, Function Transformer, A complex pipeline.

UNIT - V Lecture 8Hrs

Dive into Deep Learning: Technical requirements, Overview of neural networks, Neuron, Activation functions, A feed-forward neural network using Keras: Autoencoders, Convolutional Neural Networks.

Critical Aspects of ML and Data Science Projects: Machine learning as a search, Trade-offs in machine learning, Engagement model for a typical data science project, The phases of an engagement model.

Textbooks:

1. Sibanjan Das, UmitMertCakmak "Hands-On Automated Machine Learning" Packt Publishing, 2018. **Reference Books:**

- 1. EthernAlpaydin, "Introduction to Machine Learning", MIT Press, 2004.
- 2. Stephen Marsland, "Machine Learning -An Algorithmic Perspective", Second Edition, Chapman and Hall/CRC Machine Learning and Pattern Recognition Series, 2014.

Online Learning Resources:

Machine Learning for Construction Automation - NPTEL+

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech CSE (AI&ML)– III-II Sem L T P C 3 0 0 3

(20A05604c) COMPUTER VISION Common to CSE, IT,CSD, CSE(AI), CSE(AI&ML)AI&DS (Professional Elective Course– II)

Course Objectives:

The objective of this course is to understand the basic issues in computer vision and major approaches to address the methods to learn the Linear Filters, segmentation by clustering, Edge detection, Texture.

Course Outcomes:

After completing the course, you will be able to:

- Identify basic concepts, terminology, theories, models and methods in the field of computer vision,
- Describe known principles of human visual system,
- Describe basic methods of computer vision related to multi-scale representation, edge detection and detection of other primitives, stereo, motion and object recognition,
- Suggest a design of a computer vision system for a specific problem

UNIT I LINEAR FILTERS

Introduction to Computer Vision, Linear Filters and Convolution, Shift Invariant Linear Systems, Spatial Frequency and Fourier Transforms, Sampling and Aliasing Filters as Templates, Technique: Normalized Correlation and Finding Patterns, Technique: Scale and Image Pyramids.

UNIT II EDGE DETECTION

Noise- Additive Stationary Gaussian Noise, Why Finite Differences Respond to Noise, Estimating Derivatives - Derivative of Gaussian Filters, Why Smoothing Helps, Choosing a Smoothing Filter, Why Smooth with a Gaussian? Detecting Edges-Using the Laplacian to Detect Edges, Gradient-Based Edge Detectors, Technique: Orientation Representations and Corners.

UNIT III TEXTURE

Representing Texture –Extracting Image Structure with Filter Banks, Representing Texture using the Statistics of Filter Outputs, Analysis (and Synthesis) Using Oriented Pyramids – The Laplacian Pyramid, Filters in the Spatial Frequency Domain, Oriented Pyramids,

Application: Synthesizing Textures for Rendering, Homogeneity, Synthesis by Sampling Local Models, Shape from Texture, Shape from Texture for Planes,

Lecture 8Hrs

Lecture 9Hrs

Lecture 9Hrs

UNIT IV SEGMENTATION BY CLUSTERING

Lecture 8Hrs

What is Segmentation, Human Vision: Grouping and Gestalt, Applications: Shot Boundary Detection and Background Subtraction. Image Segmentation by Clustering Pixels, Segmentation by Graph-Theoretic Clustering. The Hough Transform, Fitting Lines, Fitting Curves

UNIT V RECOGNIZATIONBYRELATIONSBETWEENTEMPLATES Lecture 8Hrs

Finding Objects by Voting on Relations between Templates, Relational Reasoning Using Probabilistic Models and Search, Using Classifiers to Prune Search, Hidden Markov Models, Application: HMM and Sign Language Understanding, Finding People with HMM.

Textbooks:

David A. Forsyth, Jean Ponce, Computer Vision – A modern Approach, PHI, 2003.

Reference Books:

- 1. Geometric Computing with Clifford Algebras: Theoretical Foundations and Applications in Computer Vision and Robotics, Springer;1 edition,2001by Sommer.
- 2. Digital Image Processing and Computer Vision, 1/e, bySonka.
- 3. Computer Vision and Applications: Concise Edition (WithCD) by Jack Academy Press, 2000.

Online Learning Resources:

https://nptel.ac.in/courses/106105216

https://nptel.ac.in/courses/108103174

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech CSE (AI&ML)– III-II Sem L T P C

0 0 3 1.5

(20A30603) NATURAL LANGUAGE PROCESSING LAB

Course Objectives:

• To introduce the students with the basics of NLP which will empower them for developing advanced NLP tools and solving practical problems in the field.

Course Outcomes (CO):

After completion of the course, students will be able to

- Understand approaches to syntax and semantics in NLP.
- Analyse grammar formalism and context free grammars
- Apply the statistical estimation and statistical alignment models
- Apply Rule based Techniques, Statistical Machine translation (SMT), word alignment, phrasebased translation
- Have the skills (experience) of solving specific NLP tasks, which may involve programming in Python, as well as running experiments on textual data.

List of Experiments:

- 1. Word Analysis
- 2. Word Generation
- 3. Morphology
- 4. N-Grams
- 5. N-Grams Smoothing
- 6. POS Tagging: Hidden Markov Model
- 7. POS Tagging: Viterbi Decoding
- 8. Building POS Tagger
- 9. Chunking
- 10. Building Chunker

Refer: https://nlp-iiith.vlabs.ac.in/List%20of%20experiments.html

References:

1. James Allen, Natural Language Understanding, 2nd Edition, 2003, Pearson Education.

2.Natural Language Processing, A paninian perspective, Akshar Bharathi, Vineet Chaitanya, Prentice –Hall of India.

Online Learning Resources/Virtual Labs:

1. Natural Language Processing in TensorFlow | Coursera

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech CSE (AI&ML)– III-II Sem L T P C

0 0 3 1.5

(20A33601P) ADAVNCED MAHINE LEARNING LAB

Course Objectives:

- Study various learning algorithms
- Make use of Data sets in implementing the machine learning algorithms
- Implement the machine learning concepts and algorithms in any suitable language of choice
- Learn about feature engineering
- To develop skills of using recent machine learning packages for solving practical problems

Course Outcomes (CO):

At the end of the course students will be able to:

- Familiarize with Python
- Able to generate, analyze and interpret data using Python.
- Use Python to design and implement classifiers for machine learning applications.
- Implement an end to end Machine Learning System

List of Experiments:

- 1. The probability that it is Friday and that a student is absent is 3 %. Since there are 5 school days in a week, the probability that it is Friday is 20 %. What is the probability that a student is absent given that today is Friday? Apply Baye's rule in python to get the result.
- 2. Create a K-Means Clustering Algorithm from Scratch in Python?
- 3. Implement k-nearest neighbours classification using python
- 4. Given the following data, which specify classifications for nine combinations of VAR1 and VAR2 predict a classification for a case where VAR1=0.906 and VAR2=0.606, using the result of k-means clustering with 3 means (i.e., 3 centroids) VAR1 VAR2 CLASS 1.713 1.586 0 0.180 1.786 1 0.353 1.240 1 0.940 1.566 0 1.486 0.759 1 1.266 1.106 0 1.540 0.419 1 0.459 1.799 1 0.773 0.186 1
- 5. The following training examples map descriptions of individuals onto high, medium and low credit-worthiness.

Income	Recreation	Job	Status	Age group	Home- owner	Risk
Medium	skiing	design	single	twenties	no	High risk
High	golf	trading	married	forties	yes	Low risk
Low	speedway	transport	married	thirties	yes	Med risk
Medium	football	banking	single	thirties	yes	Low risk
High	flying	media	married	fifties	yes	High risk
Low	football	security	single	twenties	no	Med risk
Medium	golf	media	single	thirties	yes	Med risk
Medium	golf	transport	married	forties	yes	Low risk
High	skiing	banking	single	thirties	yes	High risk
Low	golf	unemployed	married	forties	yes	High risk

Input attributes are (from left to right) income, recreation, job, status, age group, home-owner. Find the unconditional probability of `golf' and the conditional probability of `single' given `med Risk' in the dataset?

- 6. Implement linear regression using python.
- 7. Build an Artificial Neural Network by implementing the Back-propagation algorithm and test the same using appropriate data sets.
- 8. Implement Naïve Bayes' theorem to classify the English text
- 9. Use the appropriate dataset for implementing feature engineering for machine learning to find
 - Missing data imputation
 - Categorical encoding
 - Outliers

- Feature scaling
- Mixed variables
- 10. Design an Optical Character Recognizer
- 11. Design Heart Attack risk predictor using Auto ML
- 12. Design Petrol price forecasting using Auto Keras
- 13. Design Cricket score prediction using TPOT (Auto ML)

References:

- 1. Advanced Machine Learning with python: by john hearty, 2016
- 2. Hands-On Machine Learning with Scikit-Learn and Tensor Flow (2nd Edition) by Aurelian Ger, 2020
- 3. Y. S. Abu-Mostafa, M. Magdon-Ismail, H.-T. Lin. Learning from Data: A Short Course. First Edition, 2012
- 4. C. M. Bishop. Pattern Recognition and Machine Learning. First Edition. Springer, 2006. (Second Indian Reprint, 2015).
- 5. S. J. Russell, P. Norvig. Artificial Intelligence: A Modern Approach. Third Edition, Prentice-Hall, 2010.

Online Learning Resources/Virtual Labs:

https://github.com/jiadaizhao/Advanced-Machine-Learning-Specialization

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (AI &ML)– III-II Sem L T P C

0 0 3 1.5

(20A121604) CLOUD COMPUTING LAB Common to IT, CSE(AI), CSE(AI&ML), CSE(DS), AI&DS

Course Objectives:

- Demonstrate application development using Cloud
- Explain features of Hadoop

Course Outcomes (CO):

On completion of this course, the students will be able to:

- Configure various virtualization tools such as Virtual Box, VMware workstation.
- Design and deploy a web application in a PaaS environment.
- Learn how to simulate a cloud environment to implement new schedulers.
- Install and use a generic cloud environment that can be used as a private cloud.
- Manipulate large data sets in a parallel environment.

List of Experiments:

- 1. Install VirtualBox/VMware Workstation with different flavours of Linux or windows OS on top of windows operating systems.
- 2. Install a C compiler in the virtual machine created using virtual box and execute Simple Programs
- 3. Install Google App Engine. Create hello world app and other simple web applications using python/java.
- 4. Use GAE launcher to launch the web applications.
- 5. Simulate a cloud scenario using CloudSim and run a scheduling algorithm that is not present in CloudSim.
- 6. Find a procedure to transfer the files from one virtual machine to another virtual machine.
- 7. Find a procedure to launch virtual machine using try stack (Online Open stack Demo Version)
- 8. Install Hadoop single node cluster and run simple applications like wordcount
- 9. Establish an AWS account. Use the AWS Management Console to launch an EC2 instance and connect to it.
- 10. Develop a Guestbook Application using Google App Engine
- 11. Develop a Serverless Web App using AWS
- 12. Design a Content Recommendation system using AWS
- 13. Design a Cloud based smart traffic management system
- 14. Design Cloud based attendance management system
- 15. Design E-learning cloud-based system
- 16. Using Amazon Lex build a Chatbot

References:

- 1. https://www.vmware.com/products/workstation-pro/workstation-pro-evaluation.html.
- 2. http://code.google.com/appengine/downloads.html
- 3. http://code.google.com/appengine/downloads.html

Online Learning Resources/Virtual Labs:

1. Google Cloud Computing Foundations Course - Course (nptel.ac.in)
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech CSE (AI &ML)– III-II Sem L T P C 1 0 2 2

(20A52401) SOFT SKILLS (Skill Oriented course – IV)

Course Objectives:

- To encourage all round development of the students by focusing on soft skills
- To make the students aware of critical thinking and problem-solving skills
- To develop leadership skills and organizational skills through group activities
- To function effectively with heterogeneous teams

Course Outcomes (CO):

By the end of the program students should be able to

- Memorize various elements of effective communicative skills
- Interpret people at the emotional level through emotional intelligence
- apply critical thinking skills in problem solving
- analyse the needs of an organization for team building
- Judge the situation and take necessary decisions as a leader
- Develop social and work-life skills as well as personal and emotional well-being

UNIT I

Soft Skills & Communication Skills

10 Hrs

Introduction, meaning, significance of soft skills – definition, significance, types of communication skills - Intrapersonal & Inter-personal skills - Verbal and Non-verbal Communication

Activities:

Intrapersonal Skills- Narration about self- strengths and weaknesses- clarity of thought – self- expression – articulating with felicity

(The facilitator can guide the participants before the activity citing examples from the lives of the great, anecdotes and literary sources)

Interpersonal Skills- Group Discussion – Debate – Team Tasks - Book and film Reviews by groups - Group leader presenting views (non- controversial and secular) on contemporary issues or on a given topic.

Verbal Communication- Oral Presentations- Extempore- brief addresses and speeches- convincingnegotiating- agreeing and disagreeing with professional grace.

Non-verbal communication – Public speaking – Mock interviews – presentations with an objective to identify non-verbal clues and remedy the lapses on observation

UNIT II

Critical Thinking

Activities:

Gathering information and statistics on a topic - sequencing – assorting – reasoning – critiquing issues – placing the problem – finding the root cause - seeking viable solution – judging with rationale – evaluating the views of others - Case Study, Story Analysis

UNIT III

Problem Solving & Decision Making

10 Hrs

10 Hrs

Meaning & features of Problem Solving – Managing Conflict – Conflict resolution – Methods of decision making – Effective decision making in teams – Methods & Styles

Activities:

Placing a problem which involves conflict of interests, choice and views – formulating the problem – exploring solutions by proper reasoning – Discussion on important professional, career and organizational decisions and initiate debate on the appropriateness of the decision.

Case Study & Group Discussion

UNIT IV Emotional Intelligence & Stress Management

Managing Emotions – Thinking before Reacting – Empathy for Others – Self-awareness – Self-Regulation – Stress factors – Controlling Stress – Tips

Activities:

Providing situations for the participants to express emotions such as happiness, enthusiasm, gratitude, sympathy, and confidence, compassion in the form of written or oral presentations.

Providing opportunities for the participants to narrate certain crisis and stress –ridden situations caused by failure, anger, jealousy, resentment and frustration in the form of written and oral presentation, Organizing Debates

UNIT V

Leadership Skills

10 Hrs

Team-Building – Decision-Making – Accountability – Planning – Public Speaking – Motivation – Risk-Taking - Team Building - Time Management

Activities:

Forming group with a consensus among the participants- choosing a leader- encouraging the group members to express views on leadership- democratic attitude- sense of sacrifice – sense of adjustment – vision – accommodating nature- eliciting views on successes and failures of leadership using the past knowledge and experience of the participants, Public Speaking, Activities on Time Management, Motivation, Decision Making, Group discussion etc.

NOTE-:

1. The facilitator can guide the participants before the activity citing examples from the lives of the great, anecdotes, epics, scriptures, autobiographies and literary sources which bear true relevance to the prescribed skill.

2. Case studies may be given wherever feasible for example for Decision Making- The decision of King Lear or for good Leadership – Mahendar Singh Dhoni etc.

Textbooks:

- 1. Personality Development and Soft Skills (English, Paperback, Mitra BarunK.)Publisher: Oxford University Press; Pap/Cdr edition (July 22, 2012)
- 2. Personality Development and Soft Skills: Preparing for Tomorrow, <u>Dr Shikha Kapoor</u>Publisher : I K International Publishing House; 0 edition (February 28, 2018)

Reference Books:

- **1.** Soft skills: personality development for life success by Prashant Sharma, BPB publications 2018.
- 2. Soft Skills By Alex K. Published by S.Chand
- **3.** Soft Skills: An Integrated Approach to Maximise Personality Gajendra Singh Chauhan, Sangeetha Sharma Published by Wiley.
- 4. Communication Skills and Soft Skills (Hardcover, A. Sharma) Publisher: Yking books
- 5. SOFT SKILLS for a BIG IMPACT (English, Paperback, RenuShorey) Publisher: Notion Press
- 6. Life Skills Paperback English Dr. Rajiv Kumar Jain, Dr. Usha Jain Publisher: Vayu Education of India

Online Learning Resources:

- 1. <u>https://youtu.be/DUlsNJtg2L8?list=PLLy_2iUCG87CQhELCytvXh0E_y-bOO1_q</u>
- 2. <u>https://youtu.be/xBaLgJZ0t6A?list=PLzf4HHlsQFwJZel_j2PUy0pwjVUgj7KlJ</u>
- 3. https://youtu.be/-Y-R9hD171U
- 4. https://youtu.be/gkLsn4ddmTs
- 5. <u>https://youtu.be/2bf9K2rRWwo</u>
- 6. <u>https://youtu.be/FchfE3c2jzc</u>

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech CSE (AI&ML)– III-II Sem L T P C

1 0 2 2

(20A99601) INTELLECTUAL PROPERTY RIGHTS AND PATENTS (Mandatory Non-Credit Course)

Course Objectives:

This course introduces the student to the basics of Intellectual Property Rights, Copy Right Laws, Cyber Laws, Trade Marks and Issues related to Patents. The overall idea of the course is to help and encourage the student for startups and innovations

Course Outcomes:

- Understand IPR law & Cyber law
- Discuss registration process, maintenance and litigations associated with trademarks
- Illustrate the copy right law
 - Enumerate the trade secret law.

UNIT I

Introduction to Intellectual Property Law – Evolutionary past – Intellectual Property Law Basics – Types of Intellectual Property – Innovations and Inventions of Trade related Intellectual Property Rights – Agencies Responsible for Intellectual Property Registration – Infringement – Regulatory – Overuse or Misuse of Intellectual Property Rights – Compliance and Liability Issues.

UNIT II

Introduction to Copyright – Principles of Copyright – Subject Matters of Copyright – Rights Afforded by Copyright Law –Copyright Ownership – Transfer and Duration – Right to Prepare Derivative Works –Rights of Distribution – Rights of performers – Copyright Formalities and Registration – Limitations – Infringement of Copyright – International Copyright Law-Semiconductor Chip Protection Act.

UNIT III

Introduction to Patent Law – Rights and Limitations – Rights under Patent Law – Patent Requirements – Ownership and Transfer – Patent Application Process and Granting of Patent – Patent Infringement and Litigation – International Patent Law – Double Patenting – Patent Searching – Patent Cooperation Treaty – New developments in Patent Law- Invention Developers and Promoters.

UNIT IV

Introduction to Trade Mark – Trade Mark Registration Process – Post registration procedures – Trade Mark maintenance – Transfer of rights – Inter parties Proceedings – Infringement – Dilution of Ownership of Trade Mark – Likelihood of confusion – Trade Mark claims – Trade Marks Litigation – International Trade Mark Law.

UNIT V

Introduction to Trade Secrets – Maintaining Trade Secret – Physical Security – Employee Access Limitation – Employee Confidentiality Agreement – Trade Secret Law – Unfair Competition – Trade Secret Litigation – Breach of Contract – Applying State Law. Introduction to Cyber Law – Information Technology Act – Cyber Crime and E-commerce – Data Security – Confidentiality – Privacy – International aspects of Computer and Online Crime.

Textbooks:

- 1. Deborah E.Bouchoux: "Intellectual Property". Cengage learning, New Delhi
- 2. Kompal Bansal & Parishit Bansal "Fundamentals of IPR for Engineers", BS Publications (Press)
- 3. Cyber Law. Texts & Cases, South-Western's Special Topics Collections

References:

- 1. Prabhuddha Ganguli: ' Intellectual Property Rights" Tata Mc-Graw Hill, New Delhi
- 2. Richard Stim: "Intellectual Property", Cengage Learning, New Delhi.
- 3. R. Radha Krishnan, S. Balasubramanian: "Intellectual Property Rights", Excel Books. New Delhi.
- 4. M. Ashok Kumar and Mohd. Iqbal Ali: "Intellectual Property Right" Serials Pub.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech CSE (AI &ML)– IV-I Sem 2 0 0 3

(20A31701a) RECOMMENDER SYSTEMS (Professional Elective Course- III)

Course Objectives:

- To provide students with basic concepts and its application in various domain
- To make the students understand different techniques that a data scientist needs to know for analysing big data
- To design and build a complete machine learning solution in many application domains.

Course Outcomes:

After completion of the course, students will be able to

- Aware of various issues related to Personalization and Recommendations.
- Design and implement a set of well-known Recommender System approaches used in Ecommerce and Tourism industry.
- Develop new Recommender Systems for a number of domains especially, Education, Health-care.

UNIT I An Introduction to Recommender Systems, Lecture 8Hrs Neighborhood-Based Collaborative Filtering

Introduction, Goals of Recommender Systems, Basic Models of Recommender Systems, Domain-Specific Challenges in Recommender Systems. Advanced Topics and Applications.

Introduction, Key Properties of Ratings Matrices, Predicting Ratings with Neighborhood-Neighborhood-Based Collaborative Filtering:

Based Methods, Clustering and Neighborhood-Based Methods, Dimensionality Reduction and Neighborhood Methods, Graph Models for Neighborhood-Based Methods, A Regression Modeling View of Neighborhood Methods

UNIT II Model-Based Collaborative Filtering, Content-Based Lecture 9Hrs Recommender Systems

Introduction, Decision and Regression Trees, Rule-Based Collaborative Filtering, Naive Bayes Collaborative Filtering, Using an Arbitrary Classification Model as a Black-Box, Latent Factor Models, Integrating Factorization and Neighborhood Models.

Content-Based Recommender Systems:

Introduction, Basic Components of Content-Based Systems, Preprocessing and Feature Extraction, Learning User Profiles and Filtering, Content-Based Versus Collaborative Recommendations, Using Content-Based Models for Collaborative Filtering, Summary.

UNIT III Knowledge-Based Recommender Systems, Ensemble- Lecture 9Hrs Based and Hybrid Recommender Systems

Introduction, Constraint-Based Recommender Systems, Case-Based Recommenders, Persistent Personalization in Knowledge-Based Systems, Summary.

Introduction, Ensemble Methods from the Classification Perspective, Weighted Hybrids, Switching Hybrids, Cascade Hybrids, Feature Augmentation Hybrids, Meta-Level Hybrids, Feature Combination Hybrids, Summary.

UNIT IV Evaluating Recommender Systems, Context-Sensitive Lecture 8Hrs Recommender Systems

Introduction, Evaluation Paradigms, General Goals of Evaluation Design, Design Issues in Offline Recommender Evaluation, Accuracy Metrics in Offline Evaluation, Limitations of Evaluation Measures, Limitations of Evaluation Measures.

Introduction, The Multidimensional Approach, Contextual Pre-filtering: A Reduction-Based Approach, Contextual Pre-filtering: A Reduction-Based Approach, Contextual Modeling.

UNIT V Time- and Location-Sensitive Recommender Systems Lecture 8Hrs

Introduction, Temporal Collaborative Filtering, Discrete Temporal Models, Location-Aware Recommender Systems, Location-Aware Recommender Systems, Summary.

Textbooks:

1. Charu C. Aggarwal, "Recommender Systems", Springer, 2016.

Reference Books:

1. Francesco Ricci, LiorRokach, "Recommender Systems Handbook", 2nd ed., Springer, 2015 Edition

Online Learning Resources:

- 1. <u>Recommendation System Understanding The Basic Concepts (analyticsvidhya.com)</u>
- 2. <u>Recommender Systems | Coursera</u>

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech CSE (AI&ML)– IV-I Sem L T P C

3 0 0 3

(20A30701b) INTELLIGENT INFORMATION RETRIEVAL SYSTEMS (Professional Elective Course– III)

Course Objectives:

- Teach how to retrieve information
- Discuss indexing and how to use it
- Demonstrate how to automate indexing

Course Outcomes:

After completion of the course, students will be able to

- Recognize the Boolean Model, Vector Space Model, and Probabilistic Model.
- Understand retrieval utilities.
- Understand different formatting tags
- Understand cross-language information retrieval
- Understand the clustering techniques
- Determine the efficiency.

UNIT I Introduction

Introduction to Information Retrieval Systems:

Definition of Information Retrieval System, Objectives of Information Retrieval Systems, Functional Overview, Relationship to Database Management Systems, Digital Libraries and Data Warehouses. **Information Retrieval System Capabilities:**Search Capabilities, Browse Capabilities,

Miscellaneous Capabilities

UNIT II Cataloguing and Indexing, Data structure Lecture 9Hrs Cataloguing and Indexing:

History and objectives of Indexing, Indexing Process, Automatic Indexing, Information extraction. **Data structure**:

Introduction to Data Structure, Stemming Algorithms, Inverted File Structure, N-Gram Data Structures, PAT Data Structure, Signature File Structure, Hypertext and XML Data Structures, Hidden Markov Models.

UNIT III Automatic Indexing, Document and Term Clustering Lecture 9Hrs Automatic Indexing:

Classes of Automatic Indexing, Statistical Indexing, Natural Language, Concept Indexing, Hypertext Linkages.

Document and Term Clustering:

Introduction to Clustering, Thesaurus Generation, Manual Clustering Automatic Term Clustering, Complete Term Relation Method, Clustering Using Existing Clusters, One Pass Assignments, Item Clustering, hierarchy of Clusters.

UNIT IV Automatic Indexing, Information visualization Lecture 8Hrs Automatic Indexing:

Search Statements and Binding, Similarity Measures and Ranking, Relevance Feedback, Selective Dissemination of Information Search, Weighted Searches of Boolean Systems, Searching the INTERNET and Hypertext.

Information visualization:

Introduction to Information visualization, Cognition and perception, Information Visualization Technologies.

Text Search Algorithms, Multimedia Information Lecture 8Hrs **Retrieval, Information System Evaluation**

Text Search Algorithms:

UNIT V

Introduction to Text Search techniques, software Text Search algorithms, Hardware Text Search Systems.

Multimedia Information Retrieval:

Spoken Language Audio Retrieval, Non-Speech Audio Retrieval, Graph retrieval, Imagery Retrieval,

Lecture 8Hrs

Video Retrieval.

Information System Evaluation:

Introduction to Information System Evaluation, Measures Used in System Evaluation, Measurement Example- TREC results.

Textbooks:

1. Information Storage and Retrieval Systems: Theory and Implementation by Gerald J. Kowalski, Mark T. Maybury, Springer, 2013.

Reference Books:

- 1. Frakes, W.B., Ricardo Baeza-Yates: Information Retrieval Data Structures and Algorithms, Prentice Hall, 1992.
- 2. Modern Information Retrieval by Yates Pearson Education. 3. Information Storage & Retrieval by Robert Korfhage John Wiley & Sons.

Online Learning Resources:

- 1. Information Retrieval Systems an overview | ScienceDirect Topics
- 2. <u>Information Retrieval (tutorialandexample.com)</u>

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech CSE (AI&ML)– IV-I Sem L T P C

3 0 0 3

(20A30701c) KNOWLEDGE REPRESENTATION AND REASONING (Professional Elective Course-III)

Course Objectives:

- To investigate the key concepts of knowledge representation (KR) techniques and different notations.
- To integrate the KR view as a knowledge engineering approach to model organizational knowledge.
- To introduce the study of ontologies as a KR paradigm and applications of ontologies.
- To understand various KR techniques.
- To understand process, knowledge acquisition and sharing of ontology.

Course Outcomes:

After completion of the course, students will be able to

- Analyze and design knowledge-based systems intended for computer implementation.
- Acquire theoretical knowledge about principles for logic-based representation and reasoning.
- Ability to understand knowledge- engineering process
- Ability to implement production systems, frames, inheritance systems and approaches to handle uncertain or in complete knowledge.
 IT I

UNIT I

The Key Concepts: Knowledge, Representation, Reasoning, Why knowledge representation and reasoning, Role of logic.

Logic: Historical background, Representing knowledge in logic, Varieties of logic, Name, Type, Measures, Unity and diversity

UNIT II

Lecture 9Hrs

Ontology: Ontological categories, Philosophical background, Top-level categories, describing physical entities, Defining abstractions, Sets, Collections, Types and Categories, Space and Time

UNIT III

Lecture 9Hrs

Knowledge Representations: Knowledge Engineering, Representing structure in frames, Rules and data, Object-oriented systems, Natural language Semantics, Levels of representation

UNIT IV

Lecture 8Hrs

Processes: Times, Events and Situations, Classification of processes, Procedures, Processes and Histories, Concurrent processes, Computation, Constraint satisfaction, Change Contexts: Syntax of contexts, Semantics of contexts, First-order reasoning in contexts, Modal reasoning in contexts, Encapsulating objects in contexts.

UNIT V

Lecture 8Hrs

Knowledge Soup: Vagueness, Uncertainty, Randomness and Ignorance, Limitations of logic, Fuzzy logic, Non-monotonic Logic, Theories, Models and the world, Semiotics Knowledge Acquisition and Sharing: Sharing Ontologies, Conceptual schema, accommodating

knowledge Acquisition and Sharing: Sharing Ontologies, Conceptual schema, accommodating multiple paradigms, Relating different knowledge representations, Language patterns, Tools for knowledge acquisition

Textbooks:

- 1. Knowledge Representation *logical, Philosophical, and Computational Foundations* by JohnF. Sowa, Thomson Learning.
- 2. Knowledge Representation and Reasoning by Ronald J. Brachman, Hector J. Levesque, Elsevier

Reference Books:

1. Foundations of Knowledge Representation and Reasoning: 810 (Lecture Notes in Computer Science), by Gerhard Lakemeyer, 28 June 1994

Online Learning Resources:

<u>Knowledge Representation and Reasoning | ScienceDirect</u> <u>Knowledge Representation & Reasoning In Artificial Intelligence -ProfessionalAI.com</u> (professional-ai.com)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech CSE (AI&ML)– IV-I Sem LTPC

3 0 0 3

(20A31702a) OPTIMIZATION TECHNIQUES IN AI (Professional Elective Course-IV)

Course Objectives:

- Introduce to optimization techniques using both linear and non-linear programming.
- Discuss optimization though some techniques.

Course Outcomes:

After completion of the course, students will be able to

- Relate key concepts and applications of various optimization techniques
- Identify the appropriate optimization technique for the given problem
- Formulate appropriate objective functions and constraints to solve real life optimization problems Lecture 8Hrs **UNIT I**

Statement of an optimization problems classification of optimization problem classical optimization techniques

Single variable optimizations, Multi variable optimization, equality constraints, inequality constraints, No cons traints.

UNIT II

Lecture 9Hrs

Graphical method for two dimensional problems – central problems of Linear Programming Definitions - Simples - Algorithm - Phase I and II of simplex Method Revised Simplex Method.

Simplex Multipliers

Dual and Primal Dual Simplex Method Sensitivity Analysis Transportation problem and its solution – Assignment problem and its solution -

Assignment problem and its solution by Hungarian method Karmakar's method statement, Conversion of th e Linear Programming problem into the required form, Algorithm.

UNIT III

Lecture 9Hrs

NONLINEAR PROGRAMMING (ONE DIMENSIONAL MINIMIZATION: Introduction -Unrestricted search - Exhaustive search - interval halving method - Fibonacci method.

NON LINEAR PROGRAMMING: (UNCONSTRAINED OPRIMIZATION): - Introduction

- Random search method - Uni variate method

Pattern search methods Hooke and jeeves method, simplex method- Gradient of a function steepest descent method - Conjugate gradient method

NON-LINEAR PROGRAMMING - (CONSTRAINED OPTIMIZATION):

Introduction - Characteristics of the problem - Random search method - Conjugate gradient method

UNIT IV

DYNAMIC PROGRAMMING Introduction – multistage decision processes– Principles of optimality – Computation procedures.

UNIT V

DECISIOIN MAKING

Decisions under uncertainty, under certainty and under risk – Decision trees – Expected Value of perfect information and imperfect information.

Textbooks:

- 1. Kalynamoy Deb, "Optimization for Engineering Design, Algorithms and Examples", Prentice Hall, 2004.
- 2. Hamdy A Taha, "Operations Research An introduction", Pearson Education, 2002.

Lecture 8Hrs

Lecture 8Hrs

Reference Books:

1. Hillier / Lieberman, "Introduction to Operations Research", Tata McGraw Hill Publishing company Ltd, 2002.

2. Singiresu S Rao, "Engineering optimization Theory and Practice", New Age International, 1996.

3. Mik Misniewski, "Quantitative Methods for Decision makers", MacMillian Press Ltd., 1994.

4.Kambo N S, "Mathematical Programming Techniques", Affiliated East – West press, 1991.

Online Learning Resources:

- 1. <u>Understanding Optimization Algorithms in Machine Learning | by SupriyaSecherla | Towards Data</u> <u>Science</u>
- 2. Optimization Techniques in Machine Learning | by Mlgomez | Medium

Lecture 8Hrs

Lecture 9Hrs

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech CSE (AI&ML)– IV-I Sem 1 T P C 3 0 0 3

(20A30702b) AI FOR IMAGE ANALYSIS (Professional Elective Course- IV)

Course Objectives:

- Discuss the format of images
- Explore the APIs of python related to image processing

Course Outcomes:

After completion of the course, students will be able to

- Understand the format of different type of images
- Apply the functionality of python for image processing
- Relate machine learning and image processing

UNIT I Image Formation & 3-D Imaging

Introduction to Image Formation:

Introduction, World and camera coordinates, Ideal Imaging: Perspective Projection, Real Imaging, Radiometry of Imaging, Liner System Theory of Imaging, Homogeneous Coordinates Introduction to 3-D Imaging: Basics, Depth from Triangulation, Depth from Time-of-Flight, Depth from Phase: Interferometry, Shape from Shading, Depth from Multiple Projections: Tomography

UNIT II Image Processing

Introduction to Image Processing:

Images, Pixels, Image Resolution, PPI and DPI, Bitmap Images, Lossless Compression, Lossy Compression, Image File Formats, **Color Spaces**: RGB, XYZ, HSV/HSL, LAB, LCH, YPbPr, YUV, YIQ, **Advanced Image Concepts**: Bezire Curve, Ellipsoid, Gamma Correction, Structural Similarity Index, Deconvolution, Homography, Convolution

UNIT III Basics of Python and Scikit Image Lecture 9Hrs

Basics of Python:

Variables and Data Types, Data Structures, Control Flow Statements, Conditional Statements, Functions

Scikit Image:

Uploading and Viewing an Image, Getting Image Resolution, Looking at Pixel Values, Converting Color Space, Saving an Image, Creating Basic Drawings, Doing Gamma Correction. Rotating, Shifting, and Scaling Images, Determining Structural Similarity.

UNIT IVAdvanced Image Processing Using Open CVLecture 8HrsBlending Two Images, Changing Contrast and Brightness, Adding Text to Images, Smoothing

Images: Median Filter, Gaussian Filter, Bilateral Filter.

Changing the Shape of Images, Effecting Image Thresholding, Calculating Gradients, Performing Histogram Equalization.

UNIT V Image Processing Using Machine Learning & Real- Lecture 8Hrs Time Use Cases

Feature Mapping Using the SIFT Algorithm, Image Registration Using the RANSAC Algorithm: estimate_affine, residual lengths, processing the Images, The Complete code.

Image Classification Using Artificial Neural Networks, Image Classification Using CNNs,

Image Classification Using Machine Learning Approaches: Decision Trees, Support Vector Machines, Logistics Regression, Code, Important Terms

Introduction to Real-Time Use Cases:

Finding Palm Lines, Detecting Faces, Recognizing Faces, Tracking Movements, Detecting Lanes

\

Textbooks:

- 1. Digital Image Processing by Rafael C. Gonzalez,4th Edition, 2018
- 2. Hands-On Image Processing with Python: Expert techniques for advanced image analysis and effective interpretation of image data, by <u>Sandipan Dey</u>, 2018

Reference Books:

1. Digital Image Processing-Bernd Jahne, 2005

Online Learning Resources:

- 1. How to Implement Artificial Intelligence for Solving Image Processing Tasks | Apriorit
- 2. Image Processing for Engineering and Science | Coursera

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech CSE (AI&ML)- IV-I Sem LTPC

3 0 0 3

(20A33701a) MACHINE LEARNING FOR UNSTRUTURED DATA (Professional Elective-IV)

Course Objectives:

- Gain knowledge about basic concepts of Machine Learning •
- Study different learning algorithms
- Learn about of evaluation of learning algorithms
- Learn about Categorisation and clustering algorithms.

Course Outcomes (CO):

After completion of the course, students will be able to

- Identify machine learning techniques suitable for a given problem
- Solve the different clustering algorithms.
- Apply Preprocessing applications using Probabilistic models.
- Analyze the text mining applications.

Text Mining Core Text Mining Operations UNIT - I 8Hrs

Introduction to Text Mining: Defining Text Mining, General Architecture of Text Mining Systems, Core Text Mining Operations, Using Background Knowledge for Text Mining, Text Mining Query Languages, Task-Oriented Approaches, Further Reading

UNIT - II Categorization & Clustering 9Hrs

Introduction to Categorization: Applications of Text Categorization, Definition of the Problem, Document Representation, Knowledge Engineering Approach to TC, Machine Learning Approach to TC, Using Unlabelled Data to Improve Classification, Evaluation of Text Classifiers, Citations and Notes

Introduction to Clustering: Clustering Tasks in Text Analysis, The General Clustering Problem. Clustering Algorithms, Clustering of Textual Data, Citations and Notes

UNIT III Information Extraction & Probabilistic Models for Information Extraction 9Hrs Introduction to Information Extraction: Introduction to Information Extraction, Historical Evolution of IE: The Message Understanding Conferences and Tipster, IE Examples, Architecture of IE Systems, Anaphora Resolution, Inductive Algorithms for IE, Structural IE

Introduction to Probabilistic Models for Information Extraction: Hidden Markov Models, Stochastic Context-Free Grammars, Maximal Entropy Modeling, Maximal Entropy Markov Models, Conditional Random Fields

Introduction to Preprocessing Applications Using Probabilistic and Hybrid Approaches:

Applications of HMM to Textual Analysis, Using MEMM for Information Extraction, Applications of CRFs to Textual Analysis, TEG: Using SCFG Rules for Hybrid Statistical-Knowledge-Based IE, Bootstrapping

UNIT - IV Presentation-Layer Considerations for Browsing and Query Refinement &Visualization Approaches8Hrs

Introduction to Presentation-Layer Considerations for Browsing and Query Refinement: Browsing, Accessing Constraints and Simple Specification Filtersat the Presentation Layer, Accessing the Underlying Query Language, Citations and Notes

Introduction to Visualization Approaches: Introduction, Architectural Considerations, Common Visualization Approaches for Text Mining, Visualization Techniques in Link Analysis, Real-World Example: The Document Explorer System

Link Analysis & Text Mining Applications UNIT - V 8Hrs

Introduction to Link Analysis: Preliminaries, Automatic Layout of Networks, Paths and Cycles in Graphs, Centrality, Partitioning of Networks, Pattern Matching in Networks, Software Packages for Link Analysis

Introduction to Text Mining Applications: General Considerations, Corporate Finance: Mining Industry Literature for Business Intelligence, A "Horizontal" Text Mining Application: Patent Analysis

Solution Leveraging a Commercial Text Analytics Platform, Life Sciences Research: Mining Biological Pathway Information with Gene Ways.

Textbooks:

1. The Text Mining Hand Book, by Ronen Feldman, James Sanger, 2006

Reference Books:

1. Machine learning by Anuradha Srinivasa Raghavan,2019

Online Learning Resources:

- 1. ANN on Unstructured Data | Artificial Neural Network on Unstructured Data (analyticsvidhya.com)
- 2. Machine learning and unstructured data Operationalizing Machine Learning Models | Coursera

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech CSE (AI&ML)- IV-I Sem LTPC 3 0 0 3

(20A30703a) DEV OPS (Professional Elective Course-V)

Fundamentals of software development and maintenance **Pre-requisite Course Objectives:**

- Understand collaboration and productivity by automating infrastructure and workflows
- Familiarize with continuous measuring applications performance

Course Outcomes:

After completion of the course, students will be able to

- Enumerate the principles of continuous development and deployment, automation of configuration management, inter-team collaboration, and IT serviceability
- Describe Dev Ops &Dev Sec Ops methodologies and their key concepts •
- Illustrate the types of version control systems, continuous integration tools, continuous monitoring tools, and cloud models
- Set up complete private infrastructure using version control systems and CI/CD tools

UNIT I

Dev Ops: An Overview, Dev Ops: Origins, Dev Ops: Roots, Dev Ops: Practices Dev Ops: Culture.

Adopting Dev Ops: Developing the Playbook.

Developing a Business Case for a Dev Ops: Developing the Business Case

UNIT II

Lecture 9 Hrs

Completing the Business Model Canvas, Customer Segments, Value Segments, Value Propositions, Channels, Customer Relationships, Revenue Streams, Key Resources, Key Activities, Key Partnerships, Cost Structures.

Dev Ops Plays for Optimizing the delivery Pipeline: Dev Ops as an optimization Exercise, Core Themes, The Dev Ops Plays, Specializing Core Plays

UNIT III

Dev Ops Plays for Driving Innovation: Optimize to Innovate, The Uber Syndrome, Innovation and the Role of Technology, Core Themes, play: Build a Dev Ops Platform, play: Deliver Microservices Architectures, play: DevOps an API Economy, play: Organizing for Innovation.

UNIT IV

Scaling Dev Ops for the Enterprise: Core Themes, play: Dev Ops Center of Competency, play: Developing Culture of Innovation at Scale, play: Developing a Culture of continuous Improvement, play: Team Models for Dev Ops, play: Standardization of Tools and Process, play: Security Considerations for Dev Ops, Play: Dev Ops and Outsourcing.

UNIT V

Leading Dev Ops Adoption in the Enterprise: Play: Dev Ops as a transformation Exercise, play: Developing a Culture of Collaboration and Trust, play: Dev Ops Thinking for the Line of Business, play: starting with Pilot Projects, Play: Rearing Unicorns on an Aircrafts Carrier.

Appendix Case Study: Example Dev Ops Adoption Roadmap

Organization Background, Roadmap Structure, Adoption Roadmap.

Textbooks:

1. Sanjeev Sharma, The DevOps Adoption Playbook, Published by John Wiley & Sons, Inc. 2017

Reference Books:

1. Sanjeev Sharma & Bernie Coyne, DevOps for Dummies, Published by John Wiley & Sons, Inc.

2. Michael Huttermann, DevOps for Developers, Apress publishers, 2012.

Lecture 8 Hrs

Lecture 10 Hrs

Lecture 10 Hrs

Lecture 8 Hrs

Online Learning Resources:

1. Learning DevOps with Terraform Infrastructure Automation Course | Udemy

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech CSE (AI&ML)– IV-I Sem ТРС L

0 0 3 3

(20A05703b) BLOCKCHAIN TECHNOLOGY AND APPLICATIONS (Professional Elective Course–V)

Course Objectives:

- Understand how block chain systems (mainly Bit coin and Ethereum) work and to securely interact with them.
- Design, build, and deploy smart contracts and distributed applications,
- Integrate ideas from block chain technology into their own projects. •

Course Outcomes (CO):

After completion of the course, students will be able to

- Demonstrate the foundation of the Block chain technology and understand the processes in payment and funding. Identify the risks involved in building Block chain applications.
- Review of legal implications using smart contracts.
- Choose the present landscape of Blockchain implementations and Understand Crypto • currency markets
- Examine how to profit from trading crypto currencies. •

UNIT - I Introduction

Introduction. Scenarios, Challenges Articulated, Blockchain, Blockchain Characteristics. Opportunities Using Blockchain, History of Blockchain. Evolution of Blockchain: Evolution of Computer Applications, Centralized Applications, Decentralized Applications, Stages in Blockchain Evolution, Consortia, Forks, Public Blockchain Environments, Type of Players in Blockchain Ecosystem, Players in Market.

UNIT - II **Blockchain Concepts**

Blockchain Concepts: Introduction, Changing of Blocks, Hashing, Merkle-Tree, Consensus, Mining and Finalizing Blocks, Currency aka tokens, security on blockchain, data storage on blockchain, wallets, coding on blockchain: smart contracts, peer-to-peer network, types of blockchain nodes, risk associated with blockchain solutions, life cycle of blockchain transaction.

UNIT - III Architecting Blockchain solutions

Architecting Blockchain solutions: Introduction, Obstacles for Use of Blockchain, Blockchain Relevance Evaluation Framework, Blockchain Solutions Reference Architecture, Types of Blockchain Applications. Cryptographic Tokens, Typical Solution Architecture for Enterprise Use Cases, Types of Blockchain Solutions, Architecture Considerations, Architecture with Blockchain Platforms, Approach for Designing Blockchain Applications.

Ethereum Block chain Implementation UNIT - IV Ethereum Block chain Implementation: Introduction, Tuna Fish Tracking Use Case, Ethereum Ecosystem, Ethereum Development, Ethereum Tool Stack, Ethereum Virtual Machine, Smart Contract Programming, Integrated Development Environment, Truffle Framework, Ganache, Unit Testing, Ethereum Accounts, My Ether Wallet, Ethereum Networks/Environments, Infura, Ether scan, Ethereum Clients, Decentralized Application, Metamask, Tuna Fish Use Case Implementation, **Open Zeppel in Contracts**

UNIT - V Hyper ledger Block chain Implementation Lecture 8Hrs Hyperledger Blockchain Implementation, Introduction, Use Case - Car Ownership Tracking, Hyperledger Fabric, Hyperledger Fabric Transaction Flow, FabCar Use Case Implementation, Invoking Chain code Functions Using Client Application.

Advanced Concepts in Blockchain: Introduction, Inter Planetary File System (IPFS), Zero-Knowledge Proofs, Oracles, Self-Sovereign Identity, Blockchain with IoT and AI/ML Quantum Computing and Blockchain, Initial Coin Offering, Blockchain Cloud Offerings, Blockchain and its Future Potential.

Lecture 9Hrs

Lecture 8Hrs

Lecture 9Hrs

Lecture 8Hrs

Textbooks:

- 1. Ambadas, Arshad SarfarzAriff, Sham "Blockchain for Enterprise Application Developers", Wiley, 2020
- 2. Andreas M. Antonopoulos, "Mastering Bitcoin: Programming the Open Blockchain", O'Reilly, 2017

Reference Books:

- 1. Blockchain: A Practical Guide to Developing Business, Law, and Technology Solutions, Joseph Bambara, Paul R. Allen, Mc Graw Hill.
- 2. Blockchain: Blueprint for a New Economy, Melanie Swan, O'Reilly

Online Learning Resources:

https://github.com/blockchainedindia/resources

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech CSE (AI&ML)– IV-I Sem LTPC 3 0 0 3

(20A30703b) REINFORCEMENT LEARNING **Professional Elective – V**

Pre-requisite Machine Learning

Course Objectives:

- To learn RL task formulation (action space, state space, environment definition)
- To learn Tabular based solutions (dynamic programming, Monte Carlo, temporal-difference)
- To learn Function approximation solutions (Deep O-networks) •
- To learn Policy gradient from basic (REINFORCE) towards advanced topics (proximal policy optimization, deep deterministic policy gradient, etc.)
- To learn Model-based reinforcement learning

Course Outcomes:

After completion of the course, students will be able to

- Formulate Reinforcement Learning problems
- Apply various Tabular Solution Methods to Markov Reward Process Problems
- Apply various Iterative Solution methods to Markov Decision Process Problems
- Comprehend Function approximation methods

UNIT I

Introduction

Course logistics and overview. Origin and history of Reinforcement Learning research. Its connections with other related fields and with different branches of machine learning. **Probability Primer**

Brush up of Probability concepts - Axioms of probability, concepts of random variables, PMF, PDFs, CDFs, Expectation. Concepts of joint and multiple random variables, joint, conditional and marginal distributions. Correlation and independence

UNIT II

Markov Decision Process

Introduction to RL terminology, Markov property, Markov chains, Markov reward process (MRP). Introduction to and proof of Bellman equations for MRPs along with proof of existence of solution to Bellman equations in MRP. Introduction to Markov decision process (MDP), state and action value functions, Bellman expectation equations, optimality of value functions and policies, Bellman optimality equations.

Prediction and Control by Dynamic Programming

Overview of dynamic programming for MDP, definition and formulation of planning in MDPs, principle of optimality, iterative policy evaluation, policy iteration, value iteration, Banach fixed point theorem, proof of contraction mapping property of Bellman expectation and optimality operators, proof of convergence of policy evaluation and value iteration algorithms, DP extensions.

UNIT III

Monte Carlo Methods for Model Free Prediction and Control

Overview of Monte Carlo methods for model free RL, First visit and every visit Monte Carlo, Monte Carlo control, On policy and off policy learning, Importance sampling.

TD Methods

Incremental Monte Carlo Methods for Model Free Prediction, Overview TD(0), TD(1) and TD(λ), kstep estimators, unified view of DP, MC and TD evaluation methods, TD Control methods - SARSA, Q-Learning and their variants

Lecture 8Hrs

Lecture 8Hrs

Lecture 9Hrs

Lecture 9Hrs

Function Approximation Methods

Getting started with the function approximation methods, Revisiting risk minimization, gradient descent from Machine Learning, Gradient MC and Semi-gradient TD(0) algorithms, Eligibility trace for function approximation, After states, Control with function approximation, Least squares, Experience replay in deep Q-Networks.

UNIT - V

Policy Gradients

Lecture 8Hrs

Getting started with policy gradient methods, Log-derivative trick, Naive REINFORCE algorithm, bias and variance in Reinforcement Learning, Reducing variance in policy gradient estimates, baselines, advantage function, actor-critic methods.

Textbooks:

1. Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

2.Leon-Garcia, Alberto. Probability and random processes for electrical engineering. Pearson Education India, 1994

Reference Books:

1. Murphy, Kevin P. Machine learning: a probabilistic perspective. MIT press, 2012.

Online Learning Resources:

1. <u>A brief introduction to reinforcement learning (freecodecamp.org)</u>

2. <u>Reinforcement learning - GeeksforGeeks</u>

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR LTPC B.Tech (AI&ML)– IV-I Sem 3

0 0 3

(20A52701a) ENTREPRENEURSHIP & INCUBATION (HUMANITIES ELECTIVE II)

Course Objectives:

- To make the student understand about Entrepreneurship
- To enable the student in knowing various sources of generating new ideas in setting up of New enterprise
- To facilitate the student in knowing various sources of finance in starting up of a business
- To impart knowledge about various government sources which provide financial assistance to entrepreneurs/ women entrepreneurs
- To encourage the student in creating and designing business plans

Course Outcomes:

- Understand the concept of Entrepreneurship and challenges in the world of competition.
- Apply the Knowledge in generating ideas for New Ventures.
- Analyze various sources of finance and subsidies to entrepreneur/women Entrepreneurs.
- Evaluate the role of central government and state government in promoting Entrepreneurship.
- Create and design business plan structure through incubations.

UNIT I

Entrepreneurship - Concept, knowledge and skills requirement - Characteristics of successful entrepreneurs -Entrepreneurship process - Factors impacting emergence of entrepreneurship - Differences between Entrepreneur and Intrapreneur - Understanding individual entrepreneurial mindset and personality - Recent trends in Entrepreneurship.

UNIT II

Starting the New Venture - Generating business idea - Sources of new ideas & methods of generating ideas -Opportunity recognition - Feasibility study - Market feasibility, technical/operational feasibility - Financial feasibility - Drawing business plan - Preparing project report - Presenting business plan to investors.

UNIT III

Sources of finance - Various sources of Finance available - Long term sources - Short term sources -Institutional Finance - Commercial Banks, SFC's in India - NBFC's in India - their way of financing in India for small and medium business - Entrepreneurship development programs in India - The entrepreneurial journey-Institutions in aid of entrepreneurship development

UNIT IV

Women Entrepreneurship - Entrepreneurship Development and Government - Role of Central Government and State Government in promoting women Entrepreneurship - Introduction to various incentives, subsidies and grants - Export- oriented Units - Fiscal and Tax concessions available - Women entrepreneurship - Role and importance - Growth of women entrepreneurship in India - Issues & Challenges - Entrepreneurial motivations.

UNIT V

Fundamentals of Business Incubation - Principles and good practices of business incubation- Process of business incubation and the business incubator and how they operate and influence the Type/benefits of incubators - Corporate/educational / institutional incubators - Broader business incubation environment - Pre-Incubation and Post - Incubation process - Idea lab, Business plan structure - Value proposition

Textbooks:

- 1. D F Kuratko and T V Rao, "Entrepreneurship" A South-Asian Perspective Cengage Learning, 2012. (For PPT, Case Solutions Faculty may visit : login.cengage.com)
- 2. Nandan H, "Fundamentals of Entrepreneurship", PHI, 2013

References:

1. Vasant Desai, "Small Scale Industries and Entrepreneurship", Himalaya Publishing 2012.

- Rajeev Roy "Entrepreneurship", 2nd Edition, Oxford, 2012.
 B.JanakiramandM.Rizwanal "Entrepreneurship Development: Text & Cases", Excel Books, 2011.
- 4. Stuart Read, Effectual "Entrepreneurship", Routledge, 2013.

E-Resources

- 1. Entrepreneurship-Through-the-Lens-of-enture Capital
- 2. http://www.onlinevideolecture.com/?course=mba-programs&subject=entrepreneurship
- 3. http://nptel.ac.in/courses/122106032/Pdf/7_4.pd
- 4. http://freevideolectures.com/Course/3514/Economics-/-Management-/-Entrepreneurhip/50

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (AI&ML)– IV-I Sem L T P C

3 0 0 3

(20A52701b) MANAGEMENT SCIENCE (HUMANITIES ELECTIVE-II)

Course Objectives:

- To provide fundamental knowledge on Management, Administration, Organization & its concepts.
- To make the students understand the role of management in Production
- To impart the concept of HRM in order to have an idea on Recruitment, Selection, Training& Development, job evaluation and Merit rating concepts
- To create awareness on identify Strategic Management areas & the PERT/CPM for better Project Management
- To make the students aware of the contemporary issues in management

Course Outcomes:

- Understand the concepts & principles of management and designs of organization in a practical world
- Apply the knowledge of Work-study principles & Quality Control techniques in industry
- Analyze the concepts of HRM in Recruitment, Selection and Training & Development.
- Evaluate PERT/CPM Techniques for projects of an enterprise and estimate time & cost of project & to analyze the business through SWOT.
- Create Modern technology in management science.

UNITI INTRODUCTION TO MANAGEMENT

Management - Concept and meaning - Nature-Functions - Management as a Science and Art and both. Schools of Management Thought - Taylor's Scientific Theory-Henry Fayol's principles - Eltan Mayo's Human relations - Systems Theory - **Organisational Designs** - Line organization - Line & Staff Organization - Functional Organization - Matrix Organization - Project Organization - Committee form of Organization - Social responsibilities of Management.

UNIT II OPERATIONS MANAGEMENT

Principles and Types of Plant Layout - Methods of Production (Job, batch and Mass Production), Work Study -Statistical Quality Control- Deming's contribution to Quality. **Material Management -** Objectives - Inventory-Functions - Types, Inventory Techniques - EOQ-ABC Analysis - Purchase Procedure and Stores Management -**Marketing Management -** Concept - Meaning - Nature-Functions of Marketing - Marketing Mix - Channels of Distribution - Advertisement and Sales Promotion - Marketing Strategies based on Product Life Cycle.

UNIT III HUMAN RESOURCES MANAGEMENT (HRM)

HRM - Definition and Meaning – Nature - Managerial and Operative functions - Evolution of HRM - Job Analysis - Human Resource Planning(HRP) - Employee Recruitment-Sources of Recruitment - Employee Selection - Process and Tests in Employee Selection - Employee Training and Development - On-the- job & Off-the-job training methods - Performance Appraisal Concept - Methods of Performance Appraisal – Placement - Employee Induction - Wage and Salary Administration

UNIT IV STRATEGIC & PROJECT MANAGEMENT

Definition& Meaning - Setting of Vision - Mission - Goals - Corporate Planning Process - Environmental Scanning - Steps in Strategy Formulation and Implementation - SWOT Analysis - **Project Management -** Network Analysis - Programme Evaluation and Review Technique (PERT) - Critical Path Method (CPM) Identifying Critical Path - Probability of Completing the project within given time - Project Cost- Analysis - Project Crashing (Simple problems).

UNIT V CONTEMPORARY ISSUES IN MANAGEMENT

The concept of Management Information System(MIS) - Materials Requirement Planning (MRP) - Customer Relations Management(CRM) - Total Quality Management (TQM) - Six Sigma Concept - Supply Chain Management(SCM) - Enterprise Resource Planning (ERP) - Performance Management - Business Process Outsourcing (BPO) - Business Process Re-engineering and Bench Marking - Balanced Score Card - Knowledge Management.

Textbooks:

- 1. A.R Aryasri, "Management Science", TMH, 2013
- 2. Stoner, Freeman, Gilbert, Management, Pearson Education, New Delhi, 2012.

References:

- 1. Koontz & Weihrich, "Essentials of Management", 6th edition, TMH, 2005.
- 2. Thomas N.Duening& John M.Ivancevich, "Management Principles and Guidelines", Biztantra.
- Kanishka Bedi, "Production and Operations Management", Oxford University Press, 2004.
 Samuel C.Certo, "Modern Management", 9th edition, PHI, 2005

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (AI&ML)– IV-I Sem L T P C

3 0 0 3

(20A52701c) ENTERPRISE RESOURCE PLANNING (HUMANITIES ELECTIVE-II)

Course Objectives:

- To provide a contemporary and forward-looking on the theory and practice of Enterprise Resource Planning
- To enable the students in knowing the Advantages of ERP
- To train the students to develop the basic understanding of how ERP enriches the
- Business organizations in achieving a multidimensional growth.
- Impart knowledge about the historical background of BPR
- To aim at preparing the students, technologically competitive and make them ready to self-upgrade with the higher technical skills.

Course Outcomes:

- Understand the basic use of ERP Package and its role in integrating business functions.
- Explain the challenges of ERP system in the organization
- Apply the knowledge in implementing ERP system for business
- Evaluate the role of IT in taking decisions with MIS
- Create reengineered business processes with process redesign

UNITI

Introduction to ERP: Enterprise – An Overview Integrated Management Information, Business Modeling, Integrated Data Model Business Processing Reengineering(BPR), Data Warehousing, Data Mining, On-line Analytical Processing(OLAP), Supply Chain Management (SCM), Customer Relationship Management(CRM),

UNITII

Benefits of ERP: Reduction of Lead-Time, On-time Shipment, Reduction in Cycle Time, Improved Resource Utilization, Better Customer Satisfaction, Improved Supplier Performance, Increased Flexibility, Reduced Quality Costs, Improved Information Accuracy and Design-making Capability

UNITIII

ERP Implementation Lifecycle: Pre-evaluation Screening, Package Evaluation, Project Planning Phase, Gap Analysis, Reengineering, Configuration, Implementation Team Training, Testing, Going Live, End-user Training, Post-implementation (Maintenance mode)

UNITIV

BPR: Historical background: Nature, significance and rationale of business process reengineering (BPR), Fundamentals of BPR. Major issues in process redesign: Business vision and process objectives, Processes to be redesigned, Measuring existing processes,

UNITV

IT in ERP: Role of information technology (IT) and identifying IT levers. Designing and building a prototype of the new process: BPR phases, Relationship between BPR phases. MIS - Management Information System, DSS - Decision Support System, EIS - Executive Information System.

Textbooks:

1. Pankaj Sharma. "Enterprise Resource Planning". Aph Publishing Corporation, New Delhi, 2004.

2. Alexis Leon, "Enterprise Resource Planning", IV Edition, Mc.Graw Hill, 2019

References:

- 1. Marianne Bradford "Modern ERP", 3rd edition.
- 2. "ERP making it happen Thomas f. Wallace and Michael
- 3. Directing the ERP Implementation Michael w pelphrey

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (AI&ML)– IV-I Sem L T P C

$\begin{array}{cccc} 1 & 0 & 2 & 2 \end{array}$

(20A30704) CONVERSATIONAL AI (Skill Oriented Course-V)

Pre-requisite Artificial Intelligence

Course Objectives:

- Understand basic concepts in conversational AI
- Learn recent advances in conversational AI

Course Outcomes:

After completion of the course, students will be able to

- Develop a fair understanding of AI applications and to know where and how to apply these tools to improve productivity.
- Understand AI as a tool pretty much like they treat calculator as a tool for simple calculation
- Apply methods for different training and testing assistants
- Design classifier for voice assistants

UNIT I

Introduction to Chatbots, Setting Up the Developer Environment

What are chatbots? Journey of Chatbots, Rise of Chatbots, Messaging Platforms, Botframework, Local Installation

UNIT II Basics of Bot Building, Advanced Bot Building

Intents, Entities, Design principles, showing product results, saving messages, Building your own intent classifier

UNIT III Building Chatbots the easy way

Introduction to dialog flow, building a food ordering chatbot, deploying dialog flow chatbot on the web, Integrate dialog flow chatbot on Facebook messenger, Fulfilment

UNIT IV Building Chatbots the hard way

What is Rasa NLU? Training and building a chatbot from scratch, Dialog management using Rasa core, writing custom actions of chatbot, Data preparing for training the bot, Testing the bot

UNIT V Deploying your chatbot

First steps, Rasa's credential management, Deploying the chatbot on Facebook, Deploying the chatbot on slack, Deploying the chatbot on your own

Textbooks:

- 1. Rashid Khan, Anik Das "Build Better Chatbots", Apress, 2018.
- 2. Sumit Raj "Building Chatbots with Python", Apress, 2019.

Reference Books:

Conversational AI: Chatbots that workBy Andrew Freed, 2021

Online Learning Resources:

Building AI Powered Chatbots Without Programming | Coursera

List of Experiments/Projects

- 1. Design a Chatbot to answer FAQs about your organization
- 2. Develop a Chatbot which delivers smooth customer experience via Facebook messenger
- 3. Create a chatbot which helps the students in opening a bank account
- 4. Design a chatbot which finds the diseases using symptoms provided by the user
- 5. Develop an e-commerce chatbot
- 6. Design a chatbot for the Tourism department
- 7. Design a Chatbot which helps the patients with Insomnia problem.

B.Tech. R20 Regulations

OPEN ELECTIVES

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech III-I Sem L T P C

3 0 0 3

(20A01505) BUILDING TECHNOLOGY

(Open Elective-I)

Course Objectives:

- To know different types of buildings, principles and planning of the buildings.
- To identify the termite control measure in buildings, and importance of grouping circulation, lighting and ventilation aspects in buildings.
- To know the different modes of vertical transportation in buildings.
- To know the utilization of prefabricated structural elements in buildings.
- To know the importance of acoustics in planning and designing of buildings.

Course Outcomes (CO):

- Understand the principles in planning and design the buildings
- To get different types of buildings, principles and planning of the buildings
- To know the different methods of termite proofing in buildings.
- Know the different methods of vertical transportation in buildings.
- Know the implementation of prefabricated units in buildings and effect of earthquake on buildings.
- Know the importance of acoustics in planning and designing of buildings.

UNIT I

Overview of the course, basic definitions, buildings-types-components-economy and designprinciples of planning of buildings and their importance. Definitions and importance of grouping and circulation-lighting and ventilation-consideration of the above aspects during planning of building.

UNIT II

Termite proofing: Inspection-control measures and precautions-lighting protection of buildingsgeneral principles of design of openings-various types of fire protection measures to be considered while panning a building.

UNIT III

Vertical transportation in a building: Types of vertical transportation-stairs-different forms of stairsplanning of stairs-other modes of vertical transportation –lifts-ramps-escalators.

UNIT IV

Prefabrication systems in residential buildings-walls-openings-cupboards-shelves etc., planning and modules and sizes of components in prefabrication. Planning and designing of residential buildings against the earthquake forces, principles, seismic forces and their effect on buildings.

UNIT V

Acoustics –effect of noise –properties of noise and its measurements, principles of acoustics of building. Sound insulation-importance and measures.

Textbooks:

- 1. Building construction by Varghese, PHI Learning Private Limited 2nd Edition 2015
- 2. Building construction by Punmia.B.C, Jain.A.K and Jain.A.K Laxmi Publications 11th edition 2016

Reference Books:

- 1. National Building Code of India, Bureau of Indian Standards
- 2. Building construction-Technical teachers training institute, Madras, Tata McGraw Hill.
- 3. Building construction by S.P.Arora and S.P.BrndraDhanpat Rai and Sons Publications, New Delh 2014 edition

https://nptel.ac.in/courses/105102206 https://nptel.ac.in/courses/105103206

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech III-I Sem L T P C

3 0 0 3

(20A02505) ELECTRIC VEHICLES

(Open Elective-I)

Course Objectives:

- To get exposed to new technologies of battery electric vehicles, fuel cell electric vehicles
- To get exposed to EV system configuration and parameters
- To know about electro mobility and environmental issues of EVs
- To understand about basic EV propulsion and dynamics
- To understand about fuel cell technologies for EV and HVEs
- To know about basic battery charging and control strategies used in electric vehicles

Course Outcomes:

- Understand and differentiate between conventional and latest trends in Electric Vehicles
- Analyze various EV resources, EV dynamics and Battery charging
- Apply basic concepts of EV to design complete EV system
- Design EV system with various fundamental concepts

UNIT I INTRODUCTION TO EV SYSTEMS AND PARAMETERS

Past, Present and Future EV, EV Concept, EV Technology, State-of-the Art EVs, EV configuration, EV system, Fixed and Variable gearing, single and multiple motor drive, in-wheel drives, EV parameters: Weight, size, force and energy, performance parameters.

UNIT II EV AND ENERGY SOURCES

Electro mobility and the environment, history of Electric power trains, carbon emissions from fuels, green houses and pollutants, comparison of conventional, battery, hybrid and fuel cell electric systems

UNIT III EV PROPULSION AND DYNAMICS

Choice of electric propulsion system, block diagram, concept of EV Motors, single and multi motor configurations, fixed and variable geared transmission, In-wheel motor configuration, classification, Electric motors used in current vehicle applications, Recent EV Motors, Vehicle load factors, vehicle acceleration.

UNIT IV FUEL CELLS

Introduction of fuel cells, basic operation, model, voltage, power and efficiency, power plant system – characteristics, sizing, Example of fuel cell electric vehicle.

Introduction to HEV, brake specific fuel consumption, comparison of series, series-parallel hybrid systems, examples

UNIT V BATTERY CHARGING AND CONTROL

Battery charging: Basic requirements, charger architecture, charger functions, wireless charging,

power factor correction.

Control: Introduction, modelling of electromechanical system, feedback controller design approach, PI controllers designing, torque-loop, speed control loop compensation, acceleration of battery electric vehicle

Textbooks:

- 1. C.C Chan, K.T Chau: Modern Electric Vehicle Technology, Oxford University Press Inc., New York 2001.
- 2. James Larminie, John Lowry, Electric Vehicle Technology Explained, Wiley, 2003.

Reference Books:

- 1. Electric and Hybrid Vehicles Design Fundamentals, Iqbal Husain, CRC Press 2005.
- 2. Ali Emadi, Advanced Electric Drive Vehicles, CRC Press, 2015.

Online Learning Resources:

1. <u>https://onlinecourses.nptel.ac.in/noc22_ee53/preview</u>

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech III-I Sem L T P C

3 0 0 3

(20A03505) 3D PRINTING TECHNOLOGY (Open Elective-I)

Course Objectives:

- Familiarize techniques for processing of CAD models for rapid prototyping.
- Explain fundamentals of rapid prototyping techniques.
- Demonstrate appropriate tooling for rapid prototyping process.
- Focus Rapid prototyping techniques for reverse engineering.
- Train Various Pre Processing, Processing and Post Processing errors in RP Processes.

Course Outcomes:

- Use techniques for processing of CAD models for rapid prototyping.
- Understand and apply fundamentals of rapid prototyping techniques.
- Use appropriate tooling for rapid prototyping process.
- Use rapid prototyping techniques for reverse engineering.
- Identify Various Pre Processing, Processing and Post Processing errors in RP processes.

UNIT I Introduction to 3D Printing

Introduction to Prototyping, Traditional Prototyping Vs. Rapid Prototyping (RP), Need for time compression in product development, Usage of RP parts, Generic RP process, Distinction between RP and CNC, other related technologies, Classification of RP.

UNIT II Solid and Liquid Based RP Systems

Working Principle, Materials, Advantages, Limitations and Applicationsof Fusion Deposition Modelling (FDM), Laminated Object Manufacturing (LOM), Stereo lithography (SLA), Direct Light Projection System (DLP) and Solid Ground Curing (SGC).

UNIT III Powder Based & Other RP Systems

Powder Based RP Systems: Working Principle, Materials, Advantages, Limitations and Applications of Selective Laser Sintering (SLS), Direct Metal Laser Sintering (DMLS), Laser Engineered Net Shaping (LENS) and Electron Beam Melting (EBM).

Other RP Systems: Working Principle, Materials, Advantages, Limitations and Applications of Three Dimensional Printing (3DP), Ballastic Particle Manufacturing (BPM) and Shape Deposition Manufacturing (SDM).

UNIT IV Rapid Tooling & Reverse Engineering

Rapid Tooling: Conventional Tooling Vs. Rapid Tooling, Classification of Rapid Tooling, Direct and Indirect Tooling Methods, Soft and Hard Tooling methods.

Reverse Engineering (RE): Meaning, Use, RE – The Generic Process, Phases of RE Scanning, Contact Scanners and Noncontact Scanners, Point Processing, Application Geometric Model, Development.

UNIT V Errors in 3D Printing and Applications:

Pre-processing, processing and post-processing errors, Part building errors in SLA, SLS, etc.

Software: Need for software, MIMICS, Magics, SurgiGuide, 3-matic, 3D-Doctor, Simplant, Velocity2, VoXim, Solid View, 3DView, etc., software, Preparation of CAD models, Problems with STL files, STL file manipulation, RP data formats: SLC, CLI, RPI, LEAF, IGES, HP/GL, CT, STEP.

Applications: Design, Engineering Analysis and planning applications, Rapid Tooling, Reverse Engineering, Medical Applications of RP.

Textbooks:

- 1. Chee Kai Chua and Kah Fai Leong, "3D Printing and Additive Manufacturing Principles and Applications" 5/e, World Scientific Publications, 2017.
- 2. Ian Gibson, David W Rosen, Brent Stucker, "Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing", Springer, 2/e, 2010.

Reference Books:

- 1. Frank W.Liou, "Rapid Prototyping & Engineering Applications", CRC Press, Taylor & Francis Group, 2011.
- 2. Rafiq Noorani, "Rapid Prototyping: Principles and Applications in Manufacturing", John Wiley&Sons, 2006.

Online Learning Resources:

- NPTEL Course on Rapid Manufacturing.
- https://nptel.ac.in/courses/112/104/112104265/
- https://www.hubs.com/knowledge-base/introduction-fdm-3d-printing/
- https://slideplayer.com/slide/6927137/
- https://www.mdpi.com/2073-4360/12/6/1334
- https://www.centropiaggio.unipi.it/sites/default/files/course/material/2013-11-29%20-%20FDM.pdf
- https://lecturenotes.in/subject/197
- https://www.cet.edu.in/noticefiles/258_Lecture%20Notes%20on%20RP-ilovepdf-compressed.pdf
- https://www.vssut.ac.in/lecture_notes/lecture1517967201.pdf
- <u>https://www.youtube.com/watch?v=NkC8TNts4B4</u>

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech III-I Sem L T P C

(20A04507) MATLAB PROGRAMMING FOR ENGINEERS

Course Objectives:

To provide fundamental knowledge of programming language for solving problems. **Course Outcomes**: On completion of the course, students will be able to

- Generate arrays and matrices for numerical problems solving.
- Represent data and solution in graphical display.
- Write scripts and functions to easily execute series of tasks in problem solving.
- Use arrays, matrices and functions in Engineering applications
- Design GUI for basic mathematical applications.

UNIT I

Introduction: Basics of MATLAB, MATLAB windows, Advantages of MATLAB, on-line help, file types. MATLAB Basics: Variables and Constants –Vectors and Matrices- Arrays - manipulation- Built-in MATLAB Functions. Creating and printing simple plots, Creating, Saving and Executing a Script File, Creating and Executing a function file. Programming Basics: Data Types-Operators – Hierarchy of operations, Relational and logical operators, if-end structure, if-else-end structure, if-elseif-else-end structure, switch-case statement, for-end loop, while-end loop, break and continue commands.

UNIT II

Scripts and Functions Script Files, Function Files, Debugging methods in MATLAB. Graphics: Basic 2D plots: Printing labels- grid and axes box- Entering text in a box- Axis control-Style options Multiple plots-subplots-specialized 2D plots: stem-, bar, hist, pi, stairs, loglog, semilog,polar,comet 3D plots: Mesh,Contour,Surf,Stem3,ezplot.

UNIT III

Numerical Methods Using MATLAB Numerical Differentiation, Numerical integration- Newton-Cotes integration formulae, Multi-step application of Trapezoidal rule, Simpson's 1/3 Rule for Numerical Integration. MATLAB functions for integration. Linear Equations- Linear algebra in MATLAB, solving a linear system, Gauss Elimination, Finding eigen values and eigen vectors, Matrix factorizations, Advanced topics.

UNIT IV

Nonlinear Equations System of Non-linear equations, Solving System of Equations Using MATLAB function fsolve, Interpolation Lagrange Interpolation, Two dimensional Interpolation, Straight line fit using Least Square Method, Curve fitting using built-in functions ployval and polyfit, cubic fit using least square method. Finding roots of a polynomial - roots function, Newton-Raphson Method.

UNIT V

Solution of Ordinary differential Equations (ODEs)-The 4th order Runge-kutta Method, ODE Solvers in MATLAB, Solving First –order equations using ODE23 and ODE45. Structures and Graphical user interface (GUI): Advanced data Objects, how a GUI works, Creating and displaying a GUI. GUI components, Dialog Boxes.

Learning Resources:

- 1. Getting started with MATLAB "A quick introduction for scientist and engineers by Rudra Pratap, Oxford publications.
- 2. Advanced Guide to MATLAB-Practical Examples in Science and Engineering by S.N.Alam, S.Islam, S.K. Patel-I.K. International Publishing House Pvt. Ltd.
- 3. Stephen J. Chapman-"MATLAB Programming for Engineers"- 5th Edition- Cengage Learning- 2015. Getting started with MATLAB (Version 9) The Math works.
- 4. An Introduction to MATLAB® Programming and Numerical Methods for Engineers 1st Edition by Timmy Siauw Alexandre Bayen, Elsevier-18th April 2014.
- 5. https://nptel.ac.in/courses/103106118/2

6. <u>https://www.udemy.com/numerical-methods</u>
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR **B.Tech III-I Sem** LTPC

3 0 0 3

(20A04508) INTRODUCTION TO CONTROL SYSTEMS

Course Objectives:

To learn the concepts of linear Systems theory and its analysis.

Course Outcomes:

- Understand different system representation, block diagram reduction and Mason's rule.
- Determine Time response analysis of LTI systems and steady state error.
- Plot open loop and closed loop frequency responses of systems
- Understand Stability concept.
- Perform State variable analysis.

UNIT I MATHEMATICAL MODELS OF PHYSICAL SYSTEMS

Definition & classification of system - terminology & structure of feedback control theory - Analogous systems - Physical system representation by Differential equations - Block diagram reduction- Signal flow graphs.

UNIT II TIME RESPONSE ANALYSIS & ROOT LOCUS TECHNIQUE

Standard test signals - Steady state error & error constants - Time Response of I and II order system - Root locus - Rules for sketching root loci.

UNIT III FREQUENCY RESPONSE ANALYSIS

Correlation between Time & Frequency response – Polar plots – Bode Plots – Determination of Transfer Function from Bode plot.

UNIT IV STABILITY CONCEPTS & ANALYSIS

Concept of stability - Necessary condition - RH criterion - Relative stability - Nyquist stability criterion -Stability from Bode plot – Relative stability from Nyquist & Bode – Closed loop frequency response.

UNIT V STATE VARIABLE ANALYSIS

Concept of state - State Variable & State Model - State models for linear & continuous time systems - Solution of state & output equation – controllability & observability.

Textbooks:

- 1. Benjamin C. Kuo, Automatic Control Systems, PHI Learning Private Ltd. 2010.
- 2. J. Nagrath and M. Gopal, Control Systems Engineering, Tata McGraw-Hill Education Private Limited, Reprint, 2010.

References:

- 1. Richard C. Dorf and Robert H. Bishop, Modern Control Systems, Pearson Education, Third Impression, 2009.
- 2. S. Palani, Control System Engineering, Tata McGraw-Hill Education Private Limited, First Reprint, 2010.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech III-I Sem L T P C 3 0 0 3

(20A27505) COMPUTER APPLICATIONS IN FOOD TECHNOLOGY (Open Elective-1)

Course Objectives:

- To know different software and applications in food technology.
- To understand the Chemical kinetics in food processing, Microbial distraction in thermal processing of food.
- To acquire knowledge on computer aided manufacturing and control of food machinery, inventory control, process control.

Course Outcomes:

- Students will gain knowledge on software in food technology, data analysis, Chemical kinetics, microbial distortion in thermal process
- Use of linear regression in analyzing sensory data, application of computer in some common food industries like, milk plant, bakery units & fruits vegetable plants.

UNIT I

Introduction to various software and their applications in food technology. Application of MS Excel to solve the problems of Food Technology, SPSS and JMP for data analysis, Pro-Engineering for design, Lab VIEW and SCADA for process control.

UNIT II

Chemical kinetics in food processing: Determining rate constant of zero order reaction First order rate constant and half-life of reactions. Determining energy of activation of vitamin degradation during food storage Rates of Enzymes catalyzed reaction. Microbial distraction in thermal processing of food. Determining decimal reduction time from microbial survival data, Thermal resistance factor, Z-values in thermal processing of food. Sampling to ensure that a lot is not contaminated with more than a given percentage Statistical quality control. Probability of occurrence in normal distribution. Using binomial distribution to determine probability of occurrence. Probability of defective items in a sample obtained from large lot

UNIT III

Sensory evaluation of food Statistical descriptors of a population estimated from sensory data obtained from a sample Analysis of variance. One factor, completely randomized design For two factor design without replication. Use of linear regression in analyzing sensory data. Mechanical transport of liquid food. Measuring viscosity of liquid food using a capillary tube viscometer . Solving simultaneous equations in designing multiple effect evaporator while using matrix algebra available in excel.

UNIT IV

Familiarization with the application of computer in some common food industries like, milk plant, bakery units & fruits vegetable plants, stating from the receiving of raw material up to the storage & dispatch of finished product.

UNIT V

Basic Introduction to computer aided manufacturing. Application of computers, instrumentation and control of food machinery, inventory control, process control etc.

Recommended books:

- 1. Computer Applications in Food Technology: Use of Spreadsheets in Graphical, Statistical and Process Analysis by R. Paul Singh, AP.
- 2. Manuals of MS Office.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech III-I Sem L T P C

3 0 0 3

(20A54501) OPTIMIZATION TECHNIQUES

(Open Elective- I)

Course Objectives:

This course enables the students to classify and formulate real-life problem for modeling as optimization problem, solving and applying for decision making.

Course Outcomes: Student will be able to

- formulate a linear programming problem and solve it by various methods.
- give an optimal solution in assignment jobs, give transportation of items from sources to destinations.
- identify strategies in a game for optimal profit.
- implement project planning.

UNIT I

Introduction to operational research-Linear programming problems (LPP)-Graphical method-Simplex method-Big M Method-Dual simplex method.

UNIT II

Transportation problems- assignment problems-Game theory.

UNIT III

CPM and PERT –Network diagram-Events and activities-Project Planning-Reducing critical events and activities-Critical path calculations.

UNIT IV

Sequencing Problems-Replacement problems-Capital equipment- Discounting costs- Group replacement.

UNIT V

Inventory models-various costs- Deterministic inventory models-Economic lot size-Stochastic inventory models- Single period inventory models with shortage cost.

Textbooks:

- 1. Operations Research, S.D. Sharma.
- 2. Operations Research, An Introduction, Hamdy A. Taha, Pearson publishers.
- 3. Operations Research, Nita H Shah, Ravi M Gor, Hardik Soni, PHI publishers

Reference Books:

- 1. Problems on Operations Research, Er. Prem kumargupta, Dr.D.S. Hira, Chand publishers
- 2. Operations Research, CB Gupta, PK Dwivedi, Sunil kumaryadav

Online Learning Resources:

https://nptel.ac.in/content/storage2/courses/105108127/pdf/Module_1/M1L2slides.pdf

https://slideplayer.com/slide/7790901/

https://www.ime.unicamp.br/~andreani/MS515/capitulo12.pdf

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR **B.Tech III-I Sem** LTPC 3 0 0 3

(20A56501) MATERIALS CHARACTERIZATION TECHNIQUES (Open Elective- I)

Course Objectives:

- To provide an exposure to different characterization techniques.
- To enlighten the basic principles and analysis of different spectroscopic techniques.
- To explain the basic principle of Scanning electron microscope along with its limitations and • applications.
- To identify the Resolving power and Magnification of Transmission electron microscope and its • applications.
- To educate the uses of advanced electric and magnetic instruments for characterization. •

Course Outcomes: At the end of the course the student will be able

- To explain the structural analysis by X-ray diffraction.
- To understand the morphology of different materials using SEM and TEM.
- To recognize basic principles of various spectroscopic techniques. •
- To study the electric and magnetic properties of the materials.
- To make out which technique can be used to analyse a material

UNIT I

Structure analysis by Powder X-Ray Diffraction: Introduction, Bragg's law of diffraction, Intensity of Diffracted beams, Factors affecting Diffraction, Intensities, Structure of polycrystalline Aggregates, Determination of crystal structure, Crystallite size by Scherrer and Williamson-Hall (W-H) Methods, Small angle X-ray scattering (SAXS) (in brief).

UNIT II

Microscopy technique -1 – Scanning Electron Microscopy (SEM)

Introduction, Principle, Construction and working principle of Scanning Electron Microscopy, Specimen preparation, Different types of modes used (Secondary Electron and Backscatter Electron), Advantages, limitations and applications of SEM.

UNIT III

Microscopy Technique -2 - Transmission Electron Microscopy (TEM): Construction and Working principle, Resolving power and Magnification, Bright and dark fields, Diffraction and image formation, Specimen preparation, Selected Area Diffraction, Applications of Transmission Electron Microscopy, Difference between SEM and TEM, Advantage and Limitations of Transmission Electron Microscopy.

UNIT IV

Spectroscopy techniques - Principle, Experimental arrangement, Analysis and advantages of the spectroscopic techniques – (i) UV-Visible spectroscopy (ii) Raman Spectroscopy, (iii) Fourier Transform infrared (FTIR) spectroscopy, (iv) X-ray photoelectron spectroscopy (XPS).

UNIT V

Electrical & Magnetic Characterization techniques: Electrical Properties analysis techniques (DC conductivity, AC conductivity) Activation Energy, Effect of Magnetic field on the electrical properties (Hall Effect). Magnetization measurement by induction method, Vibrating sample Magnetometer (VSM) and SQUID.

Textbooks:

1. Material Characterization: Introduction to Microscopic and Spectroscopic Methods - Yang

Leng - John Wiley & Sons (Asia) Pvt. Ltd. 2008

2. Handbook of Materials Characterization -by Sharma S. K. - Springer

References:

1. Fundamentals of Molecular Spectroscopy - IV Ed. - Colin Neville Banwell and Elaine M.

McCash, Tata McGraw-Hill, 2008.

2. Elements of X-ray diffraction - Bernard Dennis Cullity& Stuart R Stocks, Prentice Hall, 2001

- 3. Materials Characterization: Introduction to Microscopic and Spectroscopic Methods-Yang Leng- John Wiley & Sons
- 4. Characterization of Materials 2nd Edition, 3 Volumes-Kaufmann E N -John Wiley (Bp)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech III-I Sem L T P C 3 0 0 3

(20A51501) CHEMISTRY OF ENERGY MATERIALS (Open Elective- I)

Course Objectives:

- To make the student understand basic electrochemical principles such as standard electrode potentials, emf and applications of electrochemical principles in the design of batteries.
- To understand the basic concepts of processing and limitations of fossil fuels and Fuel cells & their applications.
- To impart knowledge to the students about fundamental concepts of hydrogen storage in different materials and liquification method
- Necessasity of harnessing alternate energy resources such as solar energy and its basic concepts.
- To understand and apply the basics of calculations related to material and energy flow in the processes.

Course Outcomes:

- Ability to perform simultaneous material and energy balances.
- Student learn about various electrochemical and energy systems
- Knowledge of solid, liquid and gaseous fuels
- To know the energy demand of world, nation and available resources to fulfill the demand
- To know about the conventional energy resources and their effective utilization
- To acquire the knowledge of modern energy conversion technologies
- To be able to understand and perform the various characterization techniques of fuels
- To be able to identify available nonconventional (renewable) energy resources and techniques to utilize them effectively

UNIT I: Electrochemical Systems: Galvanic cell, standard electrode potential, application of EMF, electrical double layer, dipole moments, polarization, Batteries-Lead-acid and Lithium ion batteries.

UNIT II: Fuel Cells: Fuel cell working principle, Classification of fuel cells, Polymer electrolyte membrane (PEM) fuel cells, Solid-oxide fuel cells (SOFC), Fuel cell efficiency, Basic design of fuel cell,.

UNIT III: Hydrogen Storage: Hydrogen Storage, Chemical and Physical methods of hydrogen storage, Hydrogen Storage in metal hydrides, metal organic frame works (MOF), Carbon structures, metal oxide porous structures, hydrogel storage by high pressure methods. Liquifaction method.

UNIT IV:Solar Energy: Solar energy introduction and prospects, photo voltaic (PV) technology, concentrated solar power (CSP), Solar Fuels, Solar cells.

UNIT V: Photo and Photo electrochemical Conversions: Photochemical cells and applications of photochemical reactions, specificity of photo electrochemical cell, advantage of photoelectron catalytic conversions.

References:

- 1. Physical chemistry by Ira N. Levine
- 2. Essentials of Physical Chemistry, Bahl and Bahl and Tuli.
- 3. Inorganic Chemistry, Silver and Atkins
- 4. Fuel Cell Hand Book 7th Edition, by US Department of Energy (EG&G technical services and corporation)
- 5. Hand book of solar energy and applications by Arvind Tiwari and Shyam.
- 6. Solar energy fundamental, technology and systems by Klaus Jagar et.al.
- 7. Hydrogen storage by Levine Klebonoff

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech IV-I Sem L T P C

3 0 0 3

(20A01605) ENVIRONMENTAL ECONOMICS

(Open Elective Course - II)

Course Objectives:

- To impart knowledge on sustainable development and economics of energy
- To teach regarding environmental degradation and economic analysis of degradation
- To inculcate the knowledge of economics of pollution and their management
- To demonstrate the understanding of cost benefit analysis of environmental resources
- To make the students to understand principles of economics of biodiversity

Course Outcomes :

After the completion of the course, the students will be able to know

- The information on sustainable development and economics of energy
- The information regarding environmental degradation and economic analysis of degradation
- The identification of economics of pollution and their management
- The cost benefit analysis of environmental resources
- The principles of economics of biodiversity

UNIT I

Sustainable Development: Introduction to sustainable development - Economy-Environment interlinkages - Meaning of sustainable development - Limits to growth and the environmental Kuznets curve – The sustainability debate - Issues of energy and the economics of energy – Nonrenewable energy, scarcity, optimal resources, backstop technology, property research, externalities, and the conversion of uncertainty.

UNIT II

Environmental Degradation: Economic significance and causes of environmental degradation - The concepts of policy failure, externality and market failure - Economic analysis of environmental degradation – Equi –marginal principle.

UNIT - III

Economics of Pollution: Economics of Pollution - Economics of optimal pollution, regulation, monitoring and enforcement - Managing pollution using existing markets: Bargaining solutions – Managing pollution through market intervention: Taxes, subsidies and permits.

UNIT IV

Cost – Benefit Analysis: Economic value of environmental resources and environmental damage - Concept of Total Economic Value - Alternative approaches to valuation – Cost-benefit analysis and discounting.

UNIT V

Economics of biodiversity: Economics of biodiversity conservation - Valuing individual species and diversity of species -Policy responses at national and international levels. Economics of Climate

Change - stern Report

Textbooks:

- 1. An Introduction to Environmental Economics by N. Hanley, J. Shogren and B. White Oxford University Press.(2001)
- 2. Blueprint for a Green Economy by D.W. Pearce, A. Markandya and E.B. Barbier Earthscan, London.(1989)

Reference Books:

- 1. Environmental Economics: An Elementary Introduction by R.K. Turner, D.W. Pearce and I. Bateman Harvester Wheatsheaft, London. (1994),
- 2. Economics of Natural Resources and the Environment by D.W. Pearce and R.K. Turner Harvester Wheat sheaf, London. (1990),
- 3. Environmental and Resource Economics: An Introduction by Michael S. Common and Michael Stuart 2ndEdition, Harlow: Longman.(1996),
- 4. Natural Resource and Environmental Economics by Roger Perman, Michael Common, Yue Ma and James Mc Gilvray 3rdEdition, Pearson Education.(2003),

Online Learning Resources:

https://nptel.ac.in/courses/109107171

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR **B.Tech III-II Sem** LTPC

3 0 0 3

(20A02605) SMART ELECTRIC GRID (Open Elective Course-II)

Course Objectives:

- Understand recent trends in grids, smart grid architecture and technologies ٠
- Analyze smart substations
- Apply the concepts to design smart transmission systems •
- Apply the concepts to design smart distribution systems

Course Outcomes:

- Understand trends in Smart grids, needs and roles of Smart substations
- Design and Analyze Smart Transmission systems
- Design and Analyze Smart Distribution systems ٠
- Analyze SCADA and DSCADA systems in practical working environment •

UNIT I **INTRODUCTION TO SMART GRID**

Working definitions of Smart Grid and Associated Concepts - Smart Grid Functions - Traditional Power Grid and Smart Grid - New Technologies for Smart Grid - Advantages - Indian Smart Grid -Key Challenges for Smart Grid

UNIT II SMART GRID TECHNOLOGIES

Characteristics of Smart grid, Micro grids, Definitions, Drives, benefits, types of Micro grid, building blocks, Renewable energy resources, needs in smart grid, integration impact, integration standards, Load frequency control, reactive power control, case studies and test beds

UNIT III **SMART SUBSTATIONS**

Protection, Monitoring and control devices, sensors, SCADA, Master stations, Remote terminal unit, interoperability and IEC 61850, Process level, Bay level, Station level, Benefits, role of substations in smart grid, Volt/VAR control equipment inside substation

UNIT IV SMART TRANSMISSION SYSTEMS

Energy Management systems, History, current technology, EMS for the smart grid, Synchro Phasor Measurement Units (PMUs), Wide Area Monitoring Systems (WAMS), protection & Control (WAMPC), needs in smart grid, Role of WAMPC smart grid, Drivers and benefits, Role of transmission systems in smart grid

SMART DISTRIBUTION SYSTEMS UNIT V

DMS, DSCADA, trends in DSCADA and control, current and advanced DMSs, Voltage fluctuations, effect of voltage on customer load, Drivers, objectives and benefits, voltage-VAR control, VAR control equipment on distribution feeders, implementation and optimization, FDIR - Fault Detection Isolation and Service restoration (FDIR), faults, objectives and benefits, equipment, implementation

Textbooks:

- 1. Stuart Borlase, Smart Grids Infrastructure, Technology and Solutions, CRC Press, 1e, 2013
- 2. Gil Masters, Renewable and Efficient Electric Power System, Wiley–IEEE Press, 2e, 2013.

Reference Books:

- 1. A.G. Phadke and J.S. Thorp, Synchronized Phasor Measurements and their Applications, Springer Edition, 2e, 2017.
- 2. T. Ackermann, Wind Power in Power Systems, Hoboken, NJ, USA, John Wiley, 2e, 2012.

Online Learning Resources:

1. https://onlinecourses.nptel.ac.in/noc22_ee82/preview

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech IV-I Sem L T P C

$\frac{2}{3}$ $\frac{1}{0}$ $\frac{1}{0}$ $\frac{3}{1}$

(20A04605) SIGNAL PROCESSING (Open Elective Course –II)

Course objectives:

- Understand, represent and classify continuous time and discrete time signals and systems, together with the representation of LTI systems.
- Ability to represent continuous time signals (both periodic and non-periodic) in the time domain, sdomain and the frequency domain
- Understand the properties of analog filters, and have the ability to design Butterworth filters
- Understand and apply sampling theorem and convert a signal from continuous time to discrete time or from discrete time to continuous time (without loss of information)
- Able to represent the discrete time signal in the frequency domain
- Able to design FIR and IIR filters to meet given specifications

Course Outcomes:

- Understand and explain continuous time and discrete time signals and systems, in time and frequency domain
- Apply the concepts of signals and systems to obtain the desired parameter/ representation
- Analyse the given system and classify the system/arrive at a suitable conclusion
- Design analog/digital filters to meet given specifications
- Design and implement the analog filter using components/ suitable simulation tools
- Design and implement the digital filter using suitable simulation tools, and record the input and output of the filter for the given audio signal

UNIT I

Signal Definition, Signal Classification, System definition, System classification, for both continuous time and discrete time. Definition of LTI systems

UNIT II

Introduction to Fourier Transform, Fourier Series, Relating the Laplace Transform to Fourier Transform, Frequency response of continuous time systems

UNIT III

Frequency response of ideal analog filters, Salient features of Butterworth filters Design and implementation of Analog Butterworth filters to meet given specifications

UNIT IV

Sampling Theorem- Statement and proof, converting the analog signal to a digital signal. Practical sampling. The Discrete Fourier Transform, Properties of DFT. Comparing the frequency response of analog and digital systems.

UNIT V

Definition of FIR and IIR filters. Frequency response of ideal digital filters

Transforming the Analog Butterworth filter to the Digital IIR Filter using suitable mapping techniques, to meet given specifications. Design of FIR Filters using the Window technique, and the frequency sampling technique to meet given specifications Comparing the designed filter with the desired filter frequency response

Textbooks:

1. 'Signals and Systems', by Simon Haykin and Barry Van Veen, Wiley.

References:

- 1. 'Theory and Application of Digital Signal Processing', Rabiner and Gold
- 2. 'Signals and Systems', Schaum's Outline series
- 3. 'Digital Signal Processing', Schaum's Outline series

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech III-II Sem L T P C

3 0 0 3

(20A04606) BASIC VLSI DESIGN

Course Objectives:

- Understand the fundamental aspects of circuits in silicon
- Relate to VLSI design processes and design rules

Course Outcomes:

- Identify the CMOS layout levels, and the design layers used in the process sequence.
- Describe the general steps required for processing of CMOS integrated circuits.
- Design static CMOS combinational and sequential logic at the transistor level.
- Demonstrate different logic styles such as complementary CMOS logic, pass-transistor Logic, dynamic logic, etc.
- Interpret the need for testability and testing methods in VLSI.

UNIT I

Moore's law, speed power performance, nMOS fabrication, CMOS fabrication: n-well, pwell processes, BiCMOS, Comparison of bipolar and CMOS. Basic Electrical Properties of MOS And BiCMOS Circuits: Drain to source current versus voltage characteristics, threshold voltage, transconductance.

UNIT II

Basic Electrical Properties of MOS And BiCMOS Circuits: nMOS inverter, Determination of pull up to pull down ratio: nMOS inverter driven through one or more pass transistors, alternative forms of pull up, CMOS inverter, BiCMOS inverters, latch up. Basic Circuit Concepts: Sheet resistance, area capacitance calculation, Delay unit, inverter delay, estimation of CMOS inverter delay, super buffers, BiCMOS drivers.

UNIT III

MOS and BiCMOS Circuit Design Processes: MOS layers, stick diagrams, nMOS design style, CMOS design style Design rules and layout & Scaling of MOS Circuits: λ - based design rules, scaling factors for device parameters

UNIT IV

Subsystem Design and Layout-1: Switch logic pass transistor, Gate logic inverter, NAND gates, NOR gates, pseudo nMOS, Dynamic CMOS Examples of structured design: Parity generator, Bus arbitration, multiplexers, logic function block, code converter.

UNIT V

Subsystem Design and Layout-2: Clocked sequential circuits, dynamic shift registers, bus lines, General considerations, 4-bit arithmetic processes, 4-bit shifter, RegularityDefinition& Computation Practical aspects and testability: Some thoughts of performance, optimization and CAD tools for design and simulation.

Textbooks:

1. "Basic VLSI Design", Douglas A Pucknell, Kamran Eshraghian, 3 rd Edition, Prentice Hall of India publication, 2005.

References:

1. "CMOS Digital Integrated Circuits, Analysis And Design", Sung – Mo (Steve) Kang, Yusuf Leblebici, Tata McGraw Hill, 3 rd Edition, 2003.

"VLSI Technology", S.M. Sze, 2nd edition, Tata McGraw Hill, 2003

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech III-II Sem L T P C 3 0 0 3

(20A27605) FOOD REFRIGERATION AND COLD CHAIN MANAGEMENT OPEN ELECTIVE II

Course Objectives:

- To know the equipment available to store perishable items for a long time
- To understand to increase the storage life of food items

Course Outcomes

By the end of the course, the students will

- Understand various principles and theories involved in refrigeration systems
- Understand the different equipment useful to store the food items for a long period.
- Understand how to increase the storage life of food items

UNIT I

Principles of refrigeration: Definition, background with second law of thermodynamics, unit of refrigerating capacity, coefficient of performance; Production of low temperatures: Expansion of a liquid with flashing, reversible/ irreversible adiabatic expansion of a gas/ real gas, thermoelectric cooling, adiabatic demagnetization; Air refrigerators working on reverse Carnot cycle: Carnot cycle, reversed Carnot cycle, selection of operating temperatures;

UNIT II

Air refrigerators working on Bell Coleman cycle: Reversed Brayton or Joule or Bell Coleman cycle, analysis of gas cycle, polytropic and multistage compression; Vapour refrigeration: Vapor as a refrigerant in reversed Carnot cycle with p-V and T-s diagrams, limitations of reversed Carnot cycle; Vapour compression system: Modifications in reverse Carnot cycle with vapour as a refrigerant (dry vs wet compression, throttling vs isentropic expansion), representation of vapor compression cycle on pressure- enthalpy diagram, super heating, sub cooling;

UNIT III

Liquid-vapour regenerative heat exchanger for vapour compression system, effect of suction vapour super heat and liquid sub cooling, actual vapour compression cycle; Vapour-absorption refrigeration system: Process, calculations, maximum coefficient of performance of a heat operated refrigerating machine, Common refrigerants and their properties: classification, nomenclature, desirable properties of refrigerants- physical, chemical, safety, thermodynamic and economical; Azeotropes; Components of vapour compression refrigeration system, evaporator, compressor, condenser and expansion valve;

UNIT IV

Ice manufacture, principles and systems of ice production, Treatment of water for making ice, brines, freezing tanks, ice cans, air agitation, quality of ice; Cold storage: Cold store, design of cold storage for different categories of food resources, size and shape, construction and material, insulation, vapour barriers, floors, frost-heave, interior finish and fitting, evaporators, automated cold stores, security of operations; Refrigerated transport: Handling and distribution, cold chain, refrigerated product handling, order picking, refrigerated vans, refrigerated display;

UNIT V

Air-conditioning: Meaning, factors affecting comfort air-conditioning, classification, sensible heat factor, industrial air-conditioning, problems on sensible heat factor; Winter/summer/year round air-conditioning, unitary air-conditioning systems, central air-conditioning, physiological principles in air-conditioning, air distribution and duct design methods; design of complete air-conditioning systems; humidifiers and dehumidifiers; Cooling load calculations: Load sources, product cooling, conducted heat, convicted heat, internal heat sources, heat of respiration, peak load; etc.

Textbooks:

1. Arora, C. P. "Refrigeration and Air Conditioning". Tata MC Graw Hill Publishing Co.Ltd., New Delhi. 1993.

References:

1. Adithan, M. and Laroiya, S. C. "Practical Refrigeration and Air Conditioning". Wiley Estern Ltd., New Delhi 1991

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech III-II Sem L T P C 3 0 0 3

(20A54701) WAVELET TRANSFORMS AND ITS APPLICATIONS

(Open Elective-II)

Course Objectives:

This course provides the students to understand Wavelet transforms and its applications.

Course Outcomes:

- Understand wavelets and wavelet expansion systems.
- Illustrate the multi resolution analysis ad scaling functions.
- Form fine scale to coarse scale analysis.
- Find the lattices and lifting.
- Perform numerical complexity of discrete wavelet transforms.
- Find the frames and tight frames using fourier series.

UNIT I Wavelets

Wavelets and Wavelet Expansion Systems - Wavelet Expansion- Wavelet Transform- Wavelet System- More Specific Characteristics of Wavelet Systems -Haar Scaling Functions and Wavelets - effectiveness of Wavelet Analysis -The Discrete Wavelet Transform the Discrete-Time and Continuous Wavelet Transforms.

UNIT II A Multiresolution Formulation of Wavelet Systems

Signal Spaces -The Scaling Function -Multiresolution Analysis - The Wavelet Functions - The Discrete Wavelet Transform- A Parseval's Theorem - Display of the Discrete Wavelet Transform and the Wavelet Expansion.

UNIT III Filter Banks and the Discrete Wavelet Transform

Analysis - From Fine Scale to Coarse Scale- Filtering and Down-Sampling or Decimating - Synthesis - From Coarse Scale to Fine Scale -Filtering and Up-Sampling or Stretching - Input Coefficients - Lattices and Lifting - Different Points of View.

UNIT IV Time-Frequency and Complexity

Multiresolution versus Time-Frequency Analysis- Periodic versus Nonperiodic Discrete Wavelet Transforms -The Discrete Wavelet Transform versus the Discrete-Time Wavelet Transform-Numerical Complexity of the Discrete Wavelet Transform.

UNIT V Bases and Matrix Examples

Bases, Orthogonal Bases, and Biorthogonal Bases -Matrix Examples - Fourier Series Example - Sine Expansion Example - Frames and Tight Frames - Matrix Examples -Sine Expansion as a Tight

Frame Example.

Textbooks:

- 1. C. Sidney Burrus, Ramesh A. Gopinath, "Introduction to Wavelets and Wavelets Transforms", Prentice Hall, (1997).
- 2. James S. Walker, "A Primer on Wavelets and their Scientific Applications", CRC Press, (1999).

Reference Books:

1. Raghuveer Rao, "Wavelet Transforms", Pearson Education, Asia.

Online Learning Resources:

https://www.slideshare.net/RajEndiran1/introduction-to-wavelet-transform-51504915

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech III-II Sem L T P C

3 0 0 3

(20A56701) PHYSICS OF ELECTRONIC MATERIALS AND DEVICES (Open Elective-II)

Course Objectives:

- To impart the fundamental knowledge on various materials, their properties and applications.
- To provide insight into various semiconducting materials, and their properties.
- To enlighten the characteristic behavior of various semiconductor devices.
- To provide the basics of dielectric and piezoelectric materials and their properties.
- To explain different categories of magnetic materials, mechanism and their advanced applications.

Course Outcome: At the end of the course the student will be able

- To understand the fundamentals of various materials.
- To exploit the physics of semiconducting materials
- To familiarize with the working principles of semiconductor-based devices.
- To understand the behaviour of dielectric and piezoelectric materials.
- To identify the magnetic materials and their advanced applications.

UNIT I Fundamentals of Materials Science

Introduction, Phase rule, Phase Diagram, Elementary idea of Nucleation and Growth, Methods of crystal growth. Basic idea of point, line and planar defects. Concept of thin films, preparation of thin films, Deposition of thin film using sputtering methods (RT and glow discharge).

UNIT II Semiconductors

Introduction, charge carriers in semiconductors, effective mass, Diffusion and drift, Diffusion and recombination, Diffusion length. The Fermi level & Fermi-Dirac distribution, Electron and Hole in quantum well, Change of electron-hole concentration- Qualitative analysis, Temperature dependency of carrier concentration, Conductivity and mobility, Effects of temperature and doping on mobility, High field effects.

UNIT III Physics of Semiconductor devices

Introduction, Band structure, PN junctions and their typical characteristics under equilibrium and under bias, Construction and working principles of: Light emitting diodes, Heterojunctions, Transistors, FET and MOSFETs.

UNIT IV Dielectric Materials and their applications:

Introduction, Dielectric properties, Electronic polarizability and susceptibility, Dielectric constant and frequency dependence of polarization, Dielectric strength and dielectric loss, Piezoelectric properties.

UNIT V Magnetic Materials and their applications

Introduction, Magnetism & various contributions to para and dia magnetism, Ferro and Ferri magnetism and ferrites, Concepts of Spin waves and Magnons, Anti-ferromagnetism, Domains and domain walls, Coercive force, Hysteresis, Nano-magnetism, Super-paramagnetism – Properties and applications.

Textbooks

- 1. Principles of Electronic Materials and Devices- S.O. Kasap, McGraw-Hill Education (India) Pvt. Ltd., 3rd edition, 2007.
- 2. Electronic Components and Materials- Grover and Jamwal, Dhanpat Rai and Co.

Reference Books:

- 1. Solid State Electronic Devices -B.G. Streetman and S. Banerjee, PHI Learning, 6th edition
- 2. Electronic Materials Science- Eugene A. Irene, , Wiley, 2005
- 3. An Introduction to Electronic Materials for Engineers-Wei Gao, Zhengwei Li, Nigel Sammes, World Scientific Publishing Co. Pvt. Ltd., , 2nd Edition, 2011
- 4. A First Course In Material Science- by Raghvan, McGraw Hill Pub.
- 5. The Science and Engineering of materials- Donald R.Askeland, Chapman& Hall Pub.

NPTEL courses links

https://nptel.ac.in/courses/113/106/113106062/

https://onlinecourses.nptel.ac.in/noc20_mm02/preview, https://nptel.ac.in/noc/courses/noc17/SEM1/noc17mm07

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech III-II Sem L T P C

3 0 0 3

(20A51701) CHEMISTRY OF POLYMERS AND ITS APPLICATIONS

Course Objectives:

- To understand the basic principles of polymers
- To synthesize the different polymeric materials and their characterization by various instrumental methods.
- To impart knowledge to the students about fundamental concepts of Hydro gels of polymer networks, surface phenomenon by micelles
- To enumerate the applications of polymers in engineering

Course Outcome

- At the end of the course, the student will be able to:
- Understand the state of art synthesis of Polymeric materials
- Understand the hydro gels preparation, properties and applications in drug delivery system.
- Characterize polymers materials using IR, NMR, XRD.
- Analyze surface phenomenon fo micelles and characterise using photoelectron spectroscopy, ESCA and Auger spectroscopy

UNIT I: Polymers-Basics and Characterization

Basic concepts: monomers, repeat units, degree of polymerization, linear, branched and network polymers, classification of polymers, Polymerization: condensation, addition, radical chain, ionic and coordination and copolymerization. Average molecular weight concepts: number, weight and viscosity average molecular weights, polydispersity and molecular weight distribution Measurement of molecular weight: end group, viscosity, light scattering, osmotic and ultracentrifugation methods, analysis and testing of polymers.

Unit II : Synthetic Polymers

Addition and

condensation polymerization processes - Bulk, Solution, Suspension and Emulsion polymerization.

Preparation and significance, classification of polymers based on physical properties, Thermoplastics, Thermosetting plastics, Fibers and elastomers, General Applications.

Preparation of Polymers based on different types of monomers, Olefin polymers, Diene polymers, nylons, Urea - formaldehyde, phenol - formaldehyde and melamine Epoxy and Ion exchange resins. Characterization of polymers by IR, NMR, XRD.

UNIT III : Natural Polymers & Modified cellulosics

Natural Polymers: Chemical & Physical structure, properties, source, important chemical modifications, applications of polymers such as cellulose, lignin, starch, rosin, shellac, latexes, vegetable oils and gums, proteins.

Modified cellulosics: Cellulose esters and ethers such as Ethyl cellulose, CMC, HPMC, cellulose acetals, Liquid crystalline polymers; specialty plastics- PES, PAES, PEEK, PEAK. Learning Outcomes:

UNIT IV: Hydrogels of Polymer networks and Drug delivery

Definitions of Hydrogel, polymer networks, Types of polymer networks, Methods involved in hydrogel preparation, Classification, Properties of hydrogels, Applications of hydrogels in drug delivery.

Introduction to drug systems including, drug development, regulation, absorption and disposition, routes of administration and dosage forms. Advanced drug delivery systems and controlled release.

UNIT V : Surface phenomena

Surface tension, adsorption on solids, electrical phenomena at interfaces including electrokinetics, micelles, reverse micelles, solubilization. Application of photoelectron spectroscopy, ESCA and Auger spectroscopy to the study of surfaces.

References :

1. A Text book of Polymer science, Billmayer

- Organic polymer Chemistry, K.J.Saunders, Chapman and Hall
 Advanced Organic Chemistry, B.Miller, Prentice Hall
- Advanced Organic Chemistry, B.K.
 Polymer Chemistry G.S.Mishra
 Polymer Chemistry Gowarikar
 Physical Chemistry –Galston
 Drug Delivery- Ashim K. Misra

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech IV-I Sem L T P C 3 0 0 3

(20A01704) COST EFFECTIVE HOUSING TECHNIQUES

(Open Elective Course - III)

Course Objectives:

- To understand the requirements of structural safety for future construction.
- To know about the housing scenario, housing financial systems land use and physical
- planning for housing and housing the urban poor
- To know the traditional practices of rural housing
- To know the different innovative cost effective construction techniques
- To know the alternative building materials for low cost housing.

Course Outcomes:

- To know the repair and restore action of earthquake damaged non engineered buildings and ability to understand the requirements of structural safety for future construction
- To know about the housing scenario, housing financial systems land use and physical planning for housing and housing the urban poor
- Apply the traditional practices of rural housing
- Understand the different innovative cost effective construction techniques
- Suggest the alternative building materials for low cost housing

UNIT I

- a) Housing Scenario :Introducing Status of urban housing Status of Rural Housing
- b) **Housing Finance**: Introducing Existing finance system in India Government role as facilitator Status at Rural Housing Finance Impedimently in housing finance and related issues
- c) Land use and physical planning for housing :Introduction Planning of urban land -Urban land ceiling and regulation act - Efficiency of building bye lass - Residential Densities
- d) **Housing the urban poor :**Introduction Living conditions in slums Approaches and strategies for housing urban poor

UNIT II

Development and adoption of low cost housing technology

Introduction - Adoption of innovative cost effective construction techniques - Adoption of precast elements in partial prefatroices - Adopting of total prefactcation of mass housing in India- General remarks on pre cast rooting/flooring systems -Economical wall system - Single Brick thick loading bearing wall - 19cm thick load bearing masonry walls - Half brick thick load bearing wall – Fly-ash gypsum thick for masonry - Stone Block masonry - Adoption of precast R.C. plank and join system for roof/floor in the building

UNIT III

Alternative building materials for low cost housing

Introduction - Substitute for scarce materials – Ferro-cement - Gypsum boards - Timber substitutions - Industrial wastes - Agricultural wastes - alternative building maintenance

Low cost Infrastructure services:

Introduce - Present status - Technological options - Low cost sanitation - Domestic wall - Water supply, energy

UNIT IV

Rural Housing: Introduction traditional practice of rural housing continuous - Mud Housing technology Mud roofs - Characteristics of mud - Fire treatment for thatch roof - Soil stabilization - Rural Housing programs

UNIT V

Housing in Disaster prone areas:

Introduction – Earthquake - Damages to houses - Traditional prone areas - Type of Damages and Railways of non-engineered buildings - Repair and restore action of earthquake Damaged non-engineered buildings recommendations for future constructions. Requirement's of structural safety of thin precast roofing units against Earthquake forces Status of R& D in earthquake strengthening measures - Floods, cyclone, future safety

Textbooks:

- 1. Building materials for low income houses International council for building research studies and documentation.
- 2. Hand book of low cost housing by A.K.Lal Newage international publishers.
- 3. Low cost Housing G.C. Mathur by South Asia Books

Reference Books:

- 1. Properties of concrete Neville A.m. Pitman Publishing Limited, London.
- 2. Light weight concrete, Academic Kiado, Rudhai.G Publishing home of Hungarian Academy of Sciences 1963.
- 3. Modern trends in housing in developing countries A.G. Madhava Rao, D.S. Rama chandra Murthy &G.Annamalai. E. & F. N. Spon Publishers

Online Learning Resources:

https://nptel.ac.in/courses/124107001

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech IV-I Sem L T P C

3 0 0 3

(20A02704) IoT APPLICATIONS IN ELECTRICAL ENGINEERING

(Open Elective Course - III)

Course Objectives:

- Understand basics of Internet of Things and Micro Electro Mechanical Systems (MEMS) fundamentals in design and fabrication process
- Analyze motion less and motion detectors in IoT applications
- Understand about Analyze applications of IoT in smart grid
- Apply the concept of Internet of Energy for various applications

Course Outcomes:

- Understand the concept of IoT in Electrical Engineering
- Analyze various types of motionless sensors and various types of motion detectors
- Apply various applications of IoT in smart grid
- Design future working environment with Energy internet

UNIT I SENSORS

Definitions, Terminology, Classification, Temperature sensors, Thermoresistive, Resistance, temperature detectors, Silicon resistive thermistors, Semiconductor, Piezoelectric, Humidity and moisture sensors. Capacitive, Electrical conductivity, Thermal conductivity, time domain reflectometer, Pressure and Force sensors: Piezoresistive, Capacitive, force, strain and tactile sensors, Strain gauge, Piezoelectric

UNIT II OCCUPANCY AND MOTION DETECTORS

Capacitive occupancy, Inductive and magnetic, potentiometric - Position, displacement and level sensors, Potentiometric, Capacitive, Inductive, magnetic velocity and acceleration sensors, Capacitive, Piezoresistive, piezoelectric cables, Flow sensors, Electromagnetic, Acoustic sensors - Resistive microphones, Piezoelectric, Photo resistors

UNIT III MEMS

Basic concepts of MEMS design, Beam/diaphragm mechanics, electrostatic actuation and fabrication, Process design of MEMS based sensors and actuators, Touch sensor, Pressure sensor, RF MEMS switches, Electric and Magnetic field sensors

UNIT IV IoT FOR SMART GRID

Driving factors, Generation level, Transmission level, Distribution level, Applications, Metering and monitoring applications, Standardization and interoperability, Smart home

UNIT V INTERNET of ENERGY (IoE)

Concept of Internet of Energy, Evaluation of IoE concept, Vision and motivation of IoE, Architecture, Energy routines, information sensing and processing issues, Energy internet as smart

grid

Textbooks:

- 1. Jon S. Wilson, Sensor Technology Hand book, Newnes Publisher, 2004
- 2. Tai Ran Hsu, MEMS and Microsystems: Design and manufacture, 1st Edition, Mc Grawhill Education, 2017
- 3. Ersan Kabalci and Yasin Kabalci, From Smart grid to Internet of Energy, 1st Edition, Academic Press, 2019

Reference Books:

- 1. Raj Kumar Buyya and Amir Vahid Dastjerdi, Internet of Things: Principles and Paradigms, Kindle Edition, Morgan Kaufmann Publisher, 2016
- 2. Yen Kheng Tan and Mark Wong, Energy Harvesting Systems for IoT Applications: Generation, Storage and Power Management, 1st Edition, CRC Press, 2019
- 3. RMD Sundaram Shriram, K. Vasudevan and Abhishek S. Nagarajan, Internet of Things, Wiley, 2019

Online Learning Resources:

1.<u>https://onlinecourses.nptel.ac.in/noc22_cs96/preview</u>

- 2. https://nptel.ac.in/courses/108108123
- 3. https://nptel.ac.in/courses/108108179

AWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech IV-I Sem L T P C 3 0 0 3

(20A03704) PRODUCT DESIGN AND DEVELOPMENT

Course Objectives:

- To Design products creatively while applying engineering design principles.
- To Apply principles of human factors, ethics and environmental factors in product design.
- To Work in groups or individually in their pursuit of innovative product design.
- To implement value design for optimum product cost.

Course Outcomes: After successful completion of the course, the student will be able to

- Apply knowledge of basic science and engineering fundamentals
- Undertake problem identification, formulation and solution
- Understanding of the principles of sustainable design and development
- Understanding of professional and ethical responsibilities and commitment to them

UNIT I Product Development Process

General problem-solving process - Flow of Work during the process of designing - Activity Planning Timing and scheduling, Planning Project and Product Costs - Effective Organization Structures - Interdisciplinary Cooperation, Leadership and Team behaviour.

UNIT II Task Clarification

Importance of Task Clarification - Setting up a requirements list - Contents, Format, Identifying the requirements, refining and extending the requirements, Compiling the requirements list, Examples. Using requirements lists - Updating, Partial requirements lists, Further uses - Practical applications of requirements lists.

UNIT III Conceptual Design

Steps in Conceptual Design. Abstracting to identify the essential problems - Aim of Abstraction, Broadening the problem. Formulation, Identifying the essential problems from the requirements list, establishing functions structures, Overall function, Breaking a function down into sub-functions. Developing working structures - Searching for working principles, Combining Working Principles, Selecting Working Structures, Practical Application of working structures. Developing Concepts - Firming up into principle solution variants, Evaluating principle solution variants, Practical Applications of working structures. Examples of Conceptual Design - One Handed Household Water Mixing Tap, Impulse - Loading Test Rig.

UNIT IV Embodiment Design

Steps of Embodiment Design, Checklist for Embodiment Design Basic rules of Embodiment Design Principles of Embodiment Design - Principles of Force Transformations, Principles of Division of Tasks, Principles of Self-Help, Principles of Stability and Bi-Stability, Principles of Fault-Free Design Guide for Embodiment Design - General Considerations, Design to allow for expansion, Design to allow for creep and relaxation, Design against Corrosion, Design to minimize wear, Design to Ergonomics, Design for Aesthetics, Design for Production, Design for Assembly, Design for Maintenance, Design for Recycling, Design for Minimum risk, Design to standards. Evaluation of Embodiment Designs.

UNIT V Mechanical Connections, Mechatronics AndAdaptronics:

Mechanical Connections - General functions and General Behaviour, Material connections, From Connections, Force connections, Applications. Mechatronics - General Architecture and Terminology, Goals and Limitations, Development of Mechatronic Solution, Examples. Adaptronics - Fundamentals and Terminology, Goals and Limitations, Development of Adaptronics Solutions, Examples.

Textbooks:

1. G.Paul; W. Beitzetal, Engineering Design, Springer International Education, 2010.

2. Kevin Otto: K. Wood, Product Design And Development, Pearson Education, 2013.

References:

- 1. Kenith B. Kahu, Product Planning Essentials, Yes dee Publishing, 2011.
- 2. K.T. Ulrich, Product Design and Development, TMH Publishers, 2011.

Online Learning Resources:

- https://nptel.ac.in/courses/112107217
- https://nptel.ac.in/courses/112104230
- https://www.youtube.com/watch?v=mvaqZAFdL6U
- https://nptel.ac.in/courses/107103082
- https://quizxp.com/nptel-product-design-and-manufacturing-assignment-5/

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech IV-I Sem L T P C

 $\frac{-}{3}$ $\frac{-}{0}$ $\frac{-}{0}$ $\frac{-}{3}$

(20A04704) ELECTRONIC SENSORS (Open Elective Course –III)

Course Objectives:

- Learn the characterization of sensors.
- Known the working of Electromechanical, Thermal, Magnetic and radiation sensors
- Understand the concepts of Electro analytic and smart sensors
- Able to use sensors in different applications

Course Outcomes:

- Learn about sensor Principle, Classification and Characterization.
- Explore the working of Electromechanical, Thermal, Magnetic, radiation and Electro analytic sensors
- Understand the basic concepts of Smart Sensors
- Design a system with sensors

UNIT I

Sensors / Transducers: Principles, Classification, Parameters, Characteristics, Environmental

Parameters (EP), Characterization

Electromechanical Sensors: Introduction, Resistive Potentiometer, Strain Gauge, Resistance Strain Gauge, Semiconductor Strain Gauges -Inductive Sensors: Sensitivity and Linearity of the Sensor – Types-Capacitive Sensors: Electrostatic Transducer, Force/Stress Sensors Using Quartz Resonators, Ultrasonic Sensors **UNIT II**

Thermal Sensors: Introduction, Gas thermometric Sensors, Thermal Expansion Type Thermometric Sensors, Acoustic Temperature Sensor ,Dielectric Constant and Refractive Index thermo sensors, Helium Low Temperature Thermometer ,Nuclear Thermometer ,Magnetic Thermometer ,Resistance Change Type Thermometric Sensors, Thermo emf Sensors, Junction Semiconductor Types, Thermal Radiation Sensors, Quartz Crystal Thermoelectric Sensors, NQR Thermometry, Spectroscopic Thermometry, Noise Thermometry, Heat Flux Sensors

UNIT III

Magnetic sensors: Introduction, Sensors and the Principles Behind, Magneto-resistive Sensors,

Anisotropic Magneto resistive Sensing, Semiconductor Magneto resistors, Hall Effect and Sensors, Inductance and Eddy Current Sensors, Angular/Rotary Movement Transducers, Synchros.

UNIT IV

Radiation Sensors: Introduction, Basic Characteristics, Types of Photo resistors/ Photo detectors, Xray and Nuclear Radiation Sensors, Fibre Optic Sensors

Electro analytical Sensors: The Electrochemical Cell, The Cell Potential - Standard Hydrogen

Electrode (SHE), Liquid Junction and Other Potentials, Polarization, Concentration Polarization, Reference Electrodes, Sensor Electrodes, Electro ceramics in Gas Media.

UNIT V

Smart Sensors: Introduction, Primary Sensors, Excitation, Amplification, Filters, Converters,

Compensation, Information Coding/Processing - Data Communication, Standards for Smart Sensor Interface, the Automation Sensors –Applications: Introduction, On-board Automobile Sensors (Automotive Sensors), Home Appliance Sensors, Aerospace Sensors, Sensors for Manufacturing –Sensors for environmental Monitoring

Textbooks:

1. "Sensors and Transducers - D. Patranabis" – PHI Learning Private Limited., 2003.

2. Introduction to sensors- John veteline, aravindraghu, CRC press, 2011

References:

- 1. Sensors and Actuators, D. Patranabis, 2nd Ed., PHI, 2013.
- 2. Make sensors: Terokarvinen, kemo, karvinen and villeyvaltokari, 1st edition, maker media, 2014.
- 3. Sensors handbook- Sabriesoloman, 2nd Ed. TMH, 2009

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

L T P C

3 0 0 3

(20A04506) PRINCIPLES OF COMMUNICATION SYSTEMS

Course Objectives:

B.Tech

- To understand the concept of various modulation schemes and multiplexing.
- To apply the concept of various modulation schemes to solve engineering problems.
- To analyse various modulation schemes.
- To evaluate various modulation scheme in real time applications.

Course Outcomes:

- Understand the concept of various modulation schemes and multiplexing
- Apply the concept of various modulation schemes to solve engineering problems
- Analyse various modulation schemes, and evaluate various modulation scheme in real time applications

UNIT I Amplitude Modulation

Introduction to Noise and Fourier Transform. An overview of Electronic Communication Systems. Need for Frequency Translation, Amplitude Modulation: DSB-FC, DSB-SC, SSB-SC and VSB. Frequency Division Multiplexing. Radio Transmitter and Receiver.

UNIT II Angle Modulation

Angle Modulation, Tone modulated FM Signal, Arbitrary Modulated FM Signal, FM Modulation and Demodulation. Stereophonic FM Broadcasting.

UNIT III Pulse Modulation

Sampling Theorem: Low pass and Band pass Signals. Pulse Amplitude Modulation and Concept of Time Division Multiplexing. Pulse Width Modulation. Digital Representation of Analog Signals.

UNIT IV Digital Modulation

Binary Amplitude Shift Keying, Binary Phase Shift Keying and Quadrature Phase Shift Keying, Binary Frequency Shift Keying. Regenerative Repeater.

UNIT VCommunication Systems

Satellite, RADAR, Optical, Mobile and Computer Communication (Block diagram approach only).

Note: The main emphasis is on qualitative treatment. Complex mathematical treatment may be avoided.

Textbooks:

1. Herbert Taub, Donald L Schilling and Goutam Saha, "Principles of Communication Systems", 3rdEdition, Tata McGraw-Hill Publishing Company Ltd., 2008.

References:

- 1. B. P. Lathi, Zhi Ding and Hari M. Gupta, "Modern Digital and Analog Communication Systems", 4th Edition, Oxford University Press, 2017.
- 2. K. Sam Shanmugam "Digital and Analog Communication Systems", Wiley India Edition, 2008.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR **B.Tech IV-I Sem** LTPC

3 0 0 3

(20A27704) HUMAN NUTRITION (OPEN ELECTIVE-III)

Course Objectives:

- To get knowledge on Concepts and content of nutrition source and metabolic functions.
- To know about Balanced diets for various groups; Diets and disorders, recommended dietary allowances
- To learn about Epidemiology of under nutrition and over nutrition. •
- To understand Nutrition and immunity.

Course Outcomes:

- To study the Salient features of Concepts and content of nutrition, Malnutrition, Nutrition education
- Assessment of nutritional status, disorders Food fad and faddism.

UNIT I

Concepts and content of nutrition: Nutrition agencies; Nutrition of community; Nutritional policies and their implementation; Metabolic function of nutrients. Nutrients: Sources, functions, digestion, absorption, assimilation and transport of carbohydrates, proteins and fats in human beings;

UNIT II

Water and energy balance: Water intake and losses; Basal metabolism- BMR; Body surface area and factors affecting BMR Formulation of diets: Classification of balanced diet; Balanced diets for various groups; Diets and disorders. Recommended dietary allowances (RDA); For various age group; According physiological status; Athletic and sports man; Geriatric persons

UNIT III

Malnutrition: Type of Malnutrition; Multi-factorial causes; Epidemiology of under nutrition and over nutrition; Nutrition and immunity.

UNIT IV

Nutrition education Assessment of nutritional status: Diet surveys; Anthropometry; Clinical examination; Biochemical assessment: Additional medical information

UNIT V

Blood constituents; Hormone types; Miscellaneous disorders Food fad and faddism. Potentially toxic substances in human food.

Textbooks:

- 1. Swaminathan M, Advanced Text Book on Food & Nutrition (Volume I and II), The Bangalore Printing and Publishing Co.Ltd, Bangalore, 2006
- 2. Stewart Truswell, ABC of Nutrition (4th edition), BMJ Publishing Group 2003, ISBN 0727916645.
- 3. Martin Eastwood, Principles of Human Nutrition, Blackwell Publishing, Boca Rotan

Reference:

- 1. Mike Lean and E. Combet , Barasi's Human Nutrition A Health Perspective , Second Edition CRC Press. London
- 2. Introduction to Human Nutrition, Micheal J. G., Susan A.L. Aedin C. and Hester H.V, Wiley-Blackwell Publication, UK 2009, ISBN 9781405168076
- 3. Bogert L.J., Goerge M.B, Doris H.C., Nutrition and Physical Fitness, W.B. Saunders Company, Toronto, Canada

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech IV-I Sem L T P C 3 0 0 3

(20A54702) NUMERICAL METHODS FOR ENGINEERS

(OPEN ELECTIVE-III)

Course Objectives:

This course aims at providing the student with the knowledge on various numerical methods for solving equations, interpolating the polynomials, evaluation of integral equations and solution of differential equations.

Course Outcomes:

- Apply numerical methods to solve algebraic and transcendental equations.
- Understand fitting of several kinds of curves.
- Derive interpolating polynomials using interpolation formulae.
- Solve differential and integral equations numerically.

UNIT I Solution of Algebraic & Transcendental Equations

Introduction-Bisection Method-Iterative method-Regula falsi method-Newton Raphson method. System of Algebraic equations: Gauss Jordan method-Gauss Siedal method.

UNIT II Curve Fitting

Principle of Least squares- Fitting of curves- Fitting of linear, quadratic and exponential curves.

UNIT III Interpolation

Finite differences-Newton's forward and backward interpolation formulae – Lagrange's formulae Gauss forward and backward formula, Stirling's formula, Bessel's formula

UNIT IV Numerical Integration

Numerical Integration: Trapezoidal rule - Simpson's 1/3 Rule - Simpson's 3/8 Rule

UNIT V Solution of Initial value problems to Ordinary differential equations

Numerical solution of Ordinary Differential equations: Solution by Taylor's series-Picard's Method of successive Approximations-Modified Euler's Method-Runge-Kutta Methods.

Textbooks:

- 1. Higher Engineering Mathematics, B.S.Grewal, Khanna publishers.
- 2. Probability and Statistics for Engineers and Scientists, Ronald E. Walpole, PNIE.

3. Advanced Engineering Mathematics, by Erwin Kreyszig, Wiley India

Reference Books:

- 1. Higher Engineering Mathematics, by B.V.Ramana, Mc Graw Hill publishers.
- 2. Advanced Engineering Mathematics, by Alan Jeffrey, Elsevier.

Online Learning Resources:

https://slideplayer.com/slide/8588078/

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech IV-I Sem L T P C 3 0 0 3

(20A56702) SENSORS AND ACTUATORS FOR ENGINEERING APPLICATIONS (OPEN ELECTIVE-III)

Course Objectives:

- To provide exposure to various kinds of sensors and actuators and their engineering applications.
- To impart knowledge on the basic laws and phenomenon behind the working of sensors and actuators
- To enlighten the operating principles of various sensors and actuators
- To educate the fabrication of sensors
- To identify the required sensor and actuator for interdisciplinary application

Course Outcomes:

- To recognize the need of sensors and actuators
- To understand working principles of various sensors and actuators
- To identify different type of sensors and actuators used in real life applications
- To exploit basics in common methods for converting a physical parameter into an electrical quantity
- To make use of sensors and actuators for different applications

UNIT I Introduction to Sensors and Actuators

Sensors: Types of sensors: temperature, pressure, strain, active and passive sensors, General characteristics of sensors (Principles only), Materials used and their fabrication process: Deposition: Chemical Vapor Deposition, Pattern: photolithography and Etching: Dry and Wet Etching.

Actuators: Functional diagram of actuators, Types of actuators and their basic principle of working: Hydraulic, Pneumatic, Mechanical, Electrical, Magnetic, Electromagnetic, piezo-electric and piezo-resistive actuators, Simple applications of Actuators.

UNIT II Temperature and Mechanical Sensors

Temperature Sensors: Types of temperature sensors and their basic principle of working: Thermo-resistive sensors: Thermistors, Resistance temperature sensors, Silicon resistive sensors, Thermo-electric sensors: Thermocouples, PN junction temperature sensors

Mechanical Sensors: Types of Mechanical sensors and their basic principle of working: Force sensors: strain gauges, tactile sensors, Pressure sensors: semiconductor, piezoresistive, capacitive, VRP.

UNIT III Optical and Acoustic Sensors

Optical Sensors: Basic principle and working of: Photodiodes, Phototransistors and Photo-resistors based sensors, Photomultipliers, Infrared sensors: thermal, PIR, thermopiles

Acoustic Sensors: Principle and working of Ultrasonic sensors, Piezo-electric resonators, Microphones.

UNIT IV Magnetic, Electromagnetic Sensors and Actuators

Motors as actuators (linear, rotational, stepping motors), magnetic valves, inductive sensors (LVDT, RVDT, and Proximity), Hall Effect sensors, Magneto-resistive sensors, Magneto-strictive sensors and actuators, Voice coil actuators (speakers and speaker-like actuators).

UNIT V Chemical and Radiation Sensors

Chemical Sensors: Principle and working of Electro-chemical, Thermo-chemical, Gas, pH, Humidity and moisture sensors.

Radiation Sensors: Principle and working of Ionization detectors, Scintillation detectors, Geiger-Mueller counters, Semiconductor radiation detectors and Microwave sensors (resonant, reflection, transmission)

Textbooks:

- 1. Sensors and Actuators Clarence W. de Silva, CRC Press, 2nd Edition, 2015
- 2. Sensors and Actuators, D.A.Hall and C.E.Millar, CRC Press, 1999

Reference Books:

- 1. Sensors and Transducers- D.Patranabhis, Prentice Hall of India (Pvt) Ltd. 2003
- 2. Measurement, Instrumentation, and Sensors Handbook-John G.Webster, CRC press 1999
- 3. Sensors A Comprehensive Sensors- Henry Bolte, John Wiley.
- 4. Handbook of modern sensors, Springer, Stefan Johann Rupitsch.
- 5. Principles of Industrial Instrumentation By D. Patranabhis

NPTEL courses links

https://onlinecourses.nptel.ac.in/noc21_ee32/preview

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech IV-I Sem L T P C 3 0 0 3

(20A51702) CHEMISTRY OF NANOMATERIALS AND APPLICATIONS (OPEN ELECTIVE-III)

Course Objectives:

- To understand synthetic principles of Nanomaterials by various methods
- To characterize the synthetic nanomaterials by various instrumental methods
- To enumerate the applications of nanomaterials in engineering

Course Outcomes:

- Understand the state of art synthesis of nano materials
- Characterize nano materials using ion beam, scanning probe methodologies, position sensitive atom probe and spectroscopic ellipsometry.
- Analyze nanoscale structure in metals, polymers and ceramics
- Analyze structure-property relationship in coarser scale structures
- Understand structures of carbon nano tubes

UNIT I

Introduction: Scope of nanoscience and nanotecnology, nanoscience in nature, classification of nanostructured materials, importance of nano materials.

Synthetic Methods: Bottom-Up approach: Sol-gel synthesis, microemulsions or reverse micelles, coprecipitation method, solvothermal synthesis, hydrothermal synthesis, microwave heating synthesis and sonochemical synthesis.

UNIT II

Top-Down approach: Inert gas condensation, arc discharge method, aerosol synthesis, plasma arc technique, ion sputtering, laser ablation, laser pyrolysis, and chemical vapour deposition method, electrodeposition method, high energy ball milling.

UNIT III

Techniques for characterization: Diffraction technique, spectroscopy techniques, electron microscopy techniques for the characterization of nanomaterials, BET method for surface area analysis, dynamic light scattering for particle size determination.

UNIT IV

Studies of Nano-structured Materials: Synthesis, properties and applications of the following nanomaterials, fullerenes, carbon nanotubes, core-shell nanoparticles, nanoshells, self- assembled monolayers, and monolayer protected metal nanoparticles, nanocrystalline materials, magnetic nanoparticles and important properties in relation to nanomagnetic materials, thermoelectric materials, non-linear optical materials, liquid crystals.

UNIT V

Engineering Applications of Nanomaterials

Textbooks:

- 1. NANO: The Essentials: T Pradeep, MaGraw-Hill, 2007.
- **2.** Textbook of Nanoscience and nanotechnology: B S Murty, P Shankar, BaldevRai, BB Rath and James Murday, Univ. Press, 2012.

References:

- 1. Concepts of Nanochemistry; Ludovico Cademrtiri and Geoffrey A. Ozin& Geoffrey A. Ozin, Wiley-VCH, 2011.
- **2.** Nanostructures & Nanomaterials; Synthesis, Properties & Applications: Guozhong Cao, Imperial College Press, 2007.
- 3. Nanomaterials Chemistry, C. N. R. Rao, Achim Muller, K.Cheetham, Wiley-VCH, 2007.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech IV-I Sem L T P C 3 0 0 3

(20A01705) HEALTH, SAFETY AND ENVIRONMENTAL MANAGEMENT PRACTICES

(Open Elective Course-IV)

Course Objectives:

- To understand safety, health and environmental management.
- To be familiar with hazard classification and assessment, hazard evaluation and hazard . control, environmental issues and management
- To get exposed to accidents modeling, accident investigation and reporting, concepts of. HAZOP and PHA
- To be familiar with safety measures in design and process operations.
- To get exposed to risk assessment and management, principles and methods

Course Outcomes:

- To understand safety, health and environmental management.
- To be familiar with hazard classification and assessment, hazard evaluation and hazard.
- To get exposed to accidents modelling, accident investigation and reporting control, environmental issues and management
- To get concepts of HAZOP and PHA.
- To be familiar with safety measures in design and process operations.

UNIT I

Introduction to safety, health and environmental management - Basic terms and their definitions - Importance of safety - Safety assurance and assessment - Safety in design and operation - Organizing for safety.

UNIT II

Hazard classification and assessment - Hazard evaluation and hazard control.

Environmental issues and Management - Atmospheric pollution - Flaring and fugitive release - Water pollution - Environmental monitoring - Environmental management.

UNIT III

Accidents modelling - Release modelling - Fire and explosion modelling - Toxic release and dispersion Modelling

UNIT IV

Accident investigation and reporting - concepts of HAZOP and PHA.

Safety measures in design and process operations - Inserting, explosion, fire prevention, sprinkler systems.

UNIT V

Risk assessment and management - Risk picture - Definition and characteristics - Risk acceptance criteria - Quantified risk assessment - Hazard assessment - Fatality risk assessment - Risk

management principles and methods.

Textbooks:

- 1. Process Safety Analysis, by Skelton. B, Gulf Publishing Company, Houston, 210pp., 1997.
- 2. Risk Management with Applications from Offshore Petroleum Industry, by TerjeAven and Jan Erik Vinnem, Springer, 200pp., 2007.

References:

- 1. Introduction to Safety and Reliability of Structures, by Jorg Schneider
- 2. Structural Engineering Documents Vol. 5, International Association for Bridge and Structural Engineering (IABSE), 138pp., 1997.
- 3. Safety and Health for Engineers, by Roger L. Brauer, John Wiley and Sons Inc. pp. 645-663, 2006.
- 4. Health, Safety and Environmental Management in Offshore and Petroleum Engineering, Srinivasan Chandrasekaran, John Wiley and Sons, 2016.

Online Learning Resources: https://nptel.ac.in/courses/114106017

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech IV-I Sem L T P C 3 0 0 3

(20A02705) RENEWABLE ENERGY SYSTEMS

(Open Elective Course – IV)

Course Objectives:

- Understand various sources of Energy and the need of Renewable Energy Systems.
- Understand the concepts of Solar Radiation, Wind energy and its applications.
- Analyze solar thermal and solar PV systems
- Understand the concept of geothermal energy and its applications, biomass energy, the concept of Ocean energy and fuel cells.

Course Outcomes:

- Understand various alternate sources of energy for different suitable application requirements
- Understand the concepts of solar energy generation strategies and wind energy system
- Analyze Solar and Wind energy systems
- Understand the basics of Geothermal Energy Systems, various diversified energy scenarios of ocean, biomass and fuel cells

UNIT I SOLAR ENERGY

Solar radiation - beam and diffuse radiation, solar constant, earth sun angles, attenuation and measurement of solar radiation, local solar time, derived solar angles, sunrise, sunset and day length. flat plate collectors, concentrating collectors, storage of solar energy-thermal storage.

UNIT II PV ENERGY SYSTEMS

Introduction, The PV effect in crystalline silicon basic principles, the film PV, Other PV technologies, Electrical characteristics of silicon PV cells and modules, PV systems for remote power, Grid connected PV systems.

UNIT III WIND ENERGY

Principle of wind energy conversion; Basic components of wind energy conversion systems; windmill components, various types and their constructional features; design considerations of horizontal and vertical axis wind machines: analysis of aerodynamic forces acting on wind mill blades and estimation of power output; wind data and site selection considerations.

UNIT IV GEOTHERMAL ENERGY
Estimation and nature of geothermal energy, geothermal sources and resources like hydrothermal, geo-pressured hot dry rock, magma. Advantages, disadvantages and application of geothermal energy, prospects of geothermal energy in India.

UNIT V MISCELLANEOUS ENERGY TECHNOLOGIES

Ocean Energy: Tidal Energy-Principle of working, performance and limitations. Wave Energy-Principle of working, performance and limitations.

Bio mass Energy: Biomass conversion technologies, Biogas generation plants, Classification, advantages and disadvantages, constructional details, site selection, digester design consideration

Fuel cell: Principle of working of various types of fuel cells and their working, performance and limitations.

Textbooks:

- 1. Stephen Peake, "Renewable Energy Power for a Sustainable Future", Oxford International Edition, 2018.
- 2. G. D. Rai, "Non-Conventional Energy Sources", 4th Edition, Khanna Publishers, 2000.

Reference Books:

- 1. S. P. Sukhatme, "Solar Energy", 3rd Edition, Tata Mc Graw Hill Education Pvt. Ltd, 2008.
- 2. B H Khan , "Non-Conventional Energy Resources", 2nd Edition, Tata Mc Graw Hill Education Pvt Ltd, 2011.
- 3. S. Hasan Saeed and D.K.Sharma, "Non-Conventional Energy Resources", 3rd Edition, S.K.Kataria& Sons, 2012.
- 4. G. N. Tiwari and M.K.Ghosal, "Renewable Energy Resource: Basic Principles and Applications", Narosa Publishing House, 2004.

- 1. https://nptel.ac.in/courses/103103206
- 2. https://nptel.ac.in/courses/108108078

3 0 0 3

(20A03705) INTRODUCTION TO COMPOSITE MATERIALS (Open Elective-IV)

Course Objectives:

- Introduce composite materials and their applications.
- Build proper background for stress analysis in the design of composite structures.
- Familiarize various properties of composite materials.
- Focus on biodegradable composites.

Course Outcomes:

- Identify the practical applications of composites. (L3)
- Identify the polymer matrix composites. (L3)
- Classify of bio- degradable composites. (L2)
- Outline the various types of ceramic matrix materials. (L2)

UNIT I Introduction to composites

Fundamentals of composites – Definition – classification– based on Matrix – based on structure – Advantages and applications of composites - Reinforcement – whiskers – glass fiber – carbon fiber - Aramid fiber – ceramic fiber – Properties and applications.

UNIT II Polymer matrix composites

Polymers - Polymer matrix materials – PMC processes - hand layup processes – spray up processes – resin transfer moulding – Pultrusion – Filament winding – Auto clave based methods - Injection moulding – sheet moulding compound – properties and applications of PMCs.

UNIT III Metal matrix composites

Metals - types of metal matrix composites – Metallic Matrices. Processing of MMC – Liquid state processes – solid state processes – In-situ processes. Properties and applications of MMCs.

UNIT IV Ceramic matrix composites

Ceramic matrix materials – properties – processing of CMCs –Sintering - Hot pressing – Infiltration – Lanxide process – Insitu chemical reaction techniques – solgel polymer pyrolsis –SHS - Cold isostatic pressing (CIPing) – Hot isostatic pressing (HIPing). Properties and Applications of CCMs.

UNIT V Advances & Applications of composites

Advantages of carbon matrix – limitations of carbon matrix carbon fibre – chemical vapour deposition of carbon on carbonfibre perform. Properties and applications of Carbon-carbon composites. Composites for aerospace applications.Bio degradability, introduction of bio composites, classification, processing of bio composites, applications of bio composites - Mechanical, Biomedical, automobile Engineering.

Textbooks:

- 1. Chawla K.K, Composite materials, 2/e, Springer Verlag, 1998.
- 2. Mathews F.L. and Rawlings R.D., Chapman and Hall, Composite Materials: Engineering and Science, 1/e, England, 1994.

Reference Books:

- 1. H K Shivanand, B V Babu Kiran, Composite Materials, ASIAN BOOKS, 2011.
- 2. A.B. Strong, Fundamentals of Composite Manufacturing, SME Publications, 1989.
- 3. S.C. Sharma, Composite materials, Narosa Publications, 2000.
- 4. Maureen Mitton, Hand Book of Bio plastics & Bio composites for Engineering applications, John Wiley publications, 2011.

- https://nptel.ac.in/courses/112104229
- https://nptel.ac.in/courses/112104168
- https://nptel.ac.in/courses/101104010
- https://nptel.ac.in/courses/105108124
- https://nptel.ac.in/courses/112104221

$\frac{1}{3}$ 0 0 3

(20A04705) MICROCONTROLLERS & APPLICATIONS (Open Elective Course –IV)

Course Objectives:

- Describe the Architecture of 8051 Microcontroller and Interfacing of 8051 to external memory.
- Write 8051 Assembly level programs using 8051 instruction set.
- Describe the Interrupt system, operation of Timers/Counters and Serial port of 8051.
- Interface simple switches, simple LEDs, ADC 0804, LCD and Stepper Motor to 8051.

Course Outcomes:

- Understand the importance of Microcontroller and Acquire the knowledge of Architecture of 8051 Microcontroller.
- Apply and Interface simple switches, simple LEDs, ADC 0804, LCD and Stepper Motor to using 8051 I/O ports.
- Develop the 8051 Assembly level programs using 8051 Instruction set
- Design the Interrupt system, operation of Timers/Counters and Serial port of 8051

UNIT 1 8051 Microcontroller:

Microprocessor Vs Microcontroller, Embedded Systems, Embedded Microcontrollers, 8051 Architecture-Registers, Pin diagram, I/O ports functions, Internal Memory organization. External Memory (ROM & RAM) interfacing.

UNIT II

Addressing Modes, Data Transfer instructions, Arithmetic instructions, Logical instructions, Branch instructions, Bit manipulation instructions. Simple Assembly language program examples to use these instructions.

UNIT III

8051 Stack, Stack and Subroutine instructions. Simple Assembly language program examples to use subroutine instructions.8051 Timers and Counters – Operation and Assembly language programming to generate a pulse using Mode-1 and a square wave using Mode- 2 on a port pin.

UNIT IV

8051 Serial Communication- Basics of Serial Data Communication, RS- 232 standard, 9 pin RS232 signals, Simple Serial Port programming in Assembly and C to transmit a message and to receive data serially.8051 Interrupts. 8051 Assembly language programming to generate an external interrupt using a switch.

UNIT V

8051 C programming to generate a square waveform on a port pin using a Timer interrupt. Interfacing 8051 to ADC-0804, DAC, LCD and Interfacing with relays and opto isolators, Stepper Motor Interfacing, DC motor interfacing, PWM generation using 8051.

Textbooks:

- 1. Muhammad Ali Mazidi and Janice Gillespie Mazidi and Rollin D. McKinlay; "The 8051 Microcontroller and Embedded Systems using assembly and C", PHI, 2006 / Pearson, 2006.
- 2. Kenneth J. Ayala, "The 8051 Microcontroller", 3rd Edition, Thomson/Cengage Learning.

References:

- 1. Manish K Patel, "The 8051 Microcontroller Based Embedded Systems", McGraw Hill, 2014, ISBN: 978-93-329-0125-4.
- 2. Raj Kamal, "Microcontrollers: Architecture, Programming, Interfacing and System Design", Pearson Education, 2005.

3 0 0 3

(20A04706) PRINCIPLES OF CELLULAR AND MOBILE COMMUNICATIONS Course Objectives:

• To understand the concepts and operation of cellular systems.

- To apply the concepts of cellular systems to solve engineering problems.
- To analyse cellular systems for meaningful conclusions.
- To evaluate suitability of a cellular system in real time applications.
- To design cellular patterns based on frequency reuse factor.

Course Outcomes:

At the end of the course, the student should be able to

- Understand the concepts and operation of cellular systems (L1)
- Apply the concepts of cellular systems to solve engineering problems (L2).
- Analyse cellular systems for meaningful conclusions, Evaluate suitability of a cellular system in real time applications (L3).
- Design cellular patterns based on frequency reuse factor (L4).

UNIT I Introduction to Cellular Mobile Systems

Why cellular mobile communication systems? A basic cellular system, Evolution of mobile radio communications, Performance criteria, Characteristics of mobile radio environment, Operation of cellular systems. Examples for analog and digital cellular systems.

UNIT II Cellular Radio System Design

General description of the problem, Concept of frequency reuse channels, Cochannel interference reduction, Desired C/I ratio, Cell splitting and sectoring.

UNIT III Handoffs and Dropped Calls

Why handoffs and types of handoffs, Initiation of handoff, Delaying a handoff, Forced handoffs, Queuing of handoffs, Power-difference handoffs, Mobile assisted handoff and soft handoff, Cell-site handoff, Intersystem handoff. Introduction to dropped call rate.

UNIT IV Multiple Access Techniques for Wireless Communications

Introduction, Frequency Division Multiple Access, Time Division Multiple Access, Code Division Multiple Access and Space Division Multiple Access.

UNIT V Digital Cellular Systems

Global System for Mobile Systems, Time Division Multiple Access Systems, Code Division Multiple Access Systems. Examples for 2G, 3G and 4G systems. Introduction to 5G system.

Textbooks:

- 1. William C. Y. Lee, "Mobile Cellular Telecommunications", 2ndEdition, McGraw-Hill International, 1995.
- 2. Theodore S. Rappaport, "Wireless Communications Principles and Practice", 2ndEdition, PHI, 2004.

References:

1. Aditya K. Jagannatham "Principles of Modern Wireless Communications Systems – Theory and Practice", McGraw-Hill International, 2015.

3 0 0 3

(20A27705) WASTE AND EFFLUENT MANAGEMENT (OPEN ELECTIVE-IV)

Course Objectives:

- To understand the wastewater treatment process.
- To gain knowledge on waste disposal in various ways.
- To know about advances in wastewater treatment.

Course Outcomes:

• Acquires knowledge on technologies used for chemical and biological methods of waste water and effluent treatment

UNIT I

Wastewater Treatment an Overview: Terminology – Regulations – Health and Environment Concerns in waste water management – Constituents in waste water inorganic – Organic and metallic constituents. Process Analysis and Selection: Components of waste water flows – Analysis of Data – Reactors used in waste water treatment – Mass Balance Analysis – Modeling of ideal and non ideal flow in Reactors – Process Selection **UNIT II**

Waste disposal methods – Physical, Chemical & Biological; Economical aspects of waste treatment and disposal. Treatment methods of solid wastes: Biological composting, drying and incineration; Design of Solid Waste Management System: Landfill Digester, Vermicomposting Pit.

UNIT III

Introduction: Classification and characterization of food industrial wastes from Fruit and Vegetable processing industry, Beverage industry; Fish, Meat & Poultry industry, Sugar industry and Dairy industry.

Chemical Unit Processes: Role of unit processes in waste water treatment chemical coagulation – Chemical precipitation for improved plant performance chemical oxidation – Neutralization – Chemical Storage **UNIT IV**

Biological Treatment: Overview of biological Treatment – Microbial metabolism – Bacterial growth and energetics – Aerobic biological oxidation – Anaerobic fermentation and oxidation – Trickling filters – Rotating biological contractors – Combined aerobic processes – Activated sludge film packing.

UNIT V

Advanced Wastewater Treatment: Technologies used in advanced treatment – Classification of technologies. Removal of Colloids and suspended particles – Depth Filtration – Surface Filtration – Membrane Filtration-Absorption – Ion Exchange – Advanced oxidation process.

Textbooks:

- 1. Herzka A & Booth RG; "Food Industry Wastes: Disposal and Recovery"; Applied Science Pub Ltd. 1981,
- Fair GM, Geyer JC & Okun DA; "Water & Wastewater Engineering"; John Wiley & Sons, Inc. 1986,

References:

- 1. GE; "Symposium: Processing Agricultural & Municipal Wastes"; AVI. 1973,
- 2. Inglett Green JH & Kramer A; "Food Processing Waste Management"; AVI. 1979,
- 3. Rittmann BE & McCarty PL; "Environmental Biotechnology: Principles and Applications"; Mc-Grow-Hill International editions2001,.
- 4. Bhattacharyya B C & Banerjee R; "Environmental Biotechnology"; Oxford University Press.
- 5. Bartlett RE; "Wastewater Treatment; Applied Science" Pub Ltd.
- 6. G. Tchobanoglous, FI Biston, "Waste water Engineering Treatment and Reuse": Mc Graw Hill, 2002.
- 7. "Industrial Waste Water Management Treatment and Disposal by Waste Water" 3rd Edition Mc Graw Hill 2008

3 0 0 3

(20A54703) NUMBER THEORY AND ITS APPLICATIONS

(OPEN ELECTIVE-IV)

Course Objectives:

This course enables the students to learn the concepts of number theory and its applications to information security.

Course Outcomes:

- Understand number theory and its properties.
- Understand principles on congruences
- Develop the knowledge to apply various applications
- Develop various encryption methods and its applications.

UNIT I Integers, Greatest common divisors and prime Factorization

The well-ordering property-Divisibility-Representation of integers-Computer operations with integers-Prime numbers-Greatest common divisors-The Euclidean algorithm -The fundamental theorem of arithmetic-Factorization of integers and the Fermat numbers-Linear Diophantine equations

UNIT II Congruences

Introduction to congruences -Linear congruences-The Chinese remainder theorem-Systems of linear congruences

UNIT III Applications of Congruences

Divisibility tests-The perpetual calendar-Round-robin tournaments-Computer file storage and hashing functions. Wilson's theorem and Fermat's little theorem- Pseudo primes- Euler's theorem-Euler's p hi-function- The sum and number of divisors- Perfect numbers and Mersenne primes.

UNIT IV Finite fields & Primality, factoring

Finite fields- quadratic residues and reciprocity-Pseudo primes-rho method-fermat factorization and factor bases.

UNIT V Cryptology

Basic terminology-complexity theorem-Character ciphers-Block ciphers-Exponentiation ciphers-Public-key cryptography-Discrete logarithm-Knapsack ciphers- RSA algorithm-Some applications to computer science.

Textbooks:

- 1. Elementary number theory and its applications, Kenneth H Rosen, AT & T Information systems & Bell laboratories.
- 2. A course in Number theory & Cryptography, Neal Koblitz, Springer.

Reference Books:

- **1.** An Introduction To The Theory Of Numbers, Herbert S. Zuckerman, Hugh L. Montgomery, Ivan Niven, wiley publishers
- 2. Introduction to Analytic number theory-Tom M Apostol, springer
- 3. Elementary number theory, VK Krishnan, Universities press

Online Learning Resources:

https://www.slideshare.net/ItishreeDash3/a-study-on-number-theory-and-its-applications

(20A56703) SMART MATERIALS AND DEVICES (OPEN ELECTIVE-IV)

Course Objectives:

- To provide exposure to smart materials and their engineering applications.
- To impart knowledge on the basics and phenomenon behind the working of smart materials
- To enlighten the properties exhibited by smart materials
- To educate various techniques used to synthesize and characterize smart materials
- To identify the required smart material for distinct applications/devices

Course Outcomes:

- to recognize the need of smart materials
- to understand the working principles of smart materials
- to know different techniques used to synthesize and characterize smart materials
- to exploit the properties of smart materials
- to make use of smart materials for different applications

UNIT I

Introduction: Historical account of the discovery and development of smart materials, Two phases: Austenite and Martensite, Temperature induced phase changes, Shape memory effect, Pseudoelasticity, One-way shape memory effect, Two-way shape memory effect.

UNIT II: Properties of Smart Materials: Physical principles of optical, Electrical, Dielectric, Piezoelectric, Ferroelectric, Pyroelectric and Magnetic properties of smart materials

UNIT III: Synthesis of smart materials: Solid state reaction technique, Chemical route: Chemical vapour deposition, Sol-gel technique, Hydrothermal method, Co-precipitaiton. Green synthesis, Mechanical alloying and Thin film deposition techniques: Chemical etching, Sol-gel, spray pyrolysis.

UNIT IV: Characterization techniques: X-ray diffraction, Raman spectroscopy (RS), Fourier-transform infrared reflection (FTIR), UV-Visible spectroscopy, Scanning electron microscopy (SEM), Transmission electron microscopy, Atomic force microscopy (AFM) and Differential Scanning Calorimetry (DSC).

UNIT V: Materials and Devices: Characteristics of shape memory alloys, Magnetostrictive, Optoelectronic, Piezoelectric, Metamaterials, Electro-rheological and Magneto-rheological materials and Composite materials. Devices based on smart materials: Sensors & Actuators, MEMS and intelligent devices, Future scope of the smart materials.

Textbooks:

1. Encyclopaedia of Smart Materials- Mel Schwartz, John Wiley & Sons, Inc.2002

2. Smart Materials and Structures - M. V. Gandhi and B.S. Thompson, Champman and Hall, 1992

References:

- 1. Smart Materials and Technologies- M. Addington and D. L. Schodek, , Elsevier, 2005.
- 2. Characterization and Application of smart Materials -R. Rai, Synthesis, , Nova Science, 2011.
- 3. Electroceramics: Materials, Properties, Applications -A.J. Moulson and J.M. Herbert, 2ndEdn., John Wiley & Sons, 2003.
- 4. Piezoelectric Sensorics: Force, Strain, Pressure, Acceleration and Acoustic 1. Emission Sensors, Materials and Amplifiers, G. Gautschi, Springer, 2002.
- 5. Optical Metamaterials: Fundamentals and Applications -W. Cai and V. Shalaev, springer, 2010.
- 6. Smart Materials and Structures P. L Reece, New Research, Nova Science, 2007

NPTEL courses links

https://nptel.ac.in/courses/112/104/112104173/ https://nptel.ac.in/courses/112/104/112104251/

https://nptel.ac.in/content/storage2/courses/112104173/Mod_1_smart_mat_lec

3 0 0 3

(20A51703) GREEN CHEMISTRY AND CATALYSIS FOR SUSTAINABLE ENVIRONMENT (OPEN ELECTIVE-IV)

Course Objectives:

- Learn an interdisciplinary approach to the scientific and societal issues arising from industrial chemical production, including the facets of chemistry and environmental health sciences that can be integrated to promote green chemistry and the redesign of chemicals, industrial processes and products.
- Understand the use of alternatives assessments that combine chemical, environmental health, regulatory, and business considerations to develop safer products.

Course Outcomes:

• Recognize and acquire green chemistry concepts and apply these ideas to develop respect for the inter connectedness of our world and an ethic of environmental care and sustainability.

UNIT I: PRINCIPLES AND CONCEPTS OF GREEN CHEMISTRY

Introduction, Green chemistry Principles, sustainable development and green chemistry, atom economy, atom economic: Rearrangement and addition reactions and un-economic reactions: Substitution, elimination and Wittig reactions, Reducing Toxicity. Waste - problems and Prevention: Design for degradation, Polymer recycling.

UNIT II: CATALYSIS AND GREEN CHEMISTRY

Introduction to catalysis, Heterogeneous catalysts: Basics of Heterogeneous Catalysis, Zeolites and the Bulk Chemical Industry, Heterogeneous Catalysis in the Fine Chemical and Pharmaceutical Industries, Catalytic Converters, Homogeneous catalysis: Transition Metal Catalysts with Phosphine Ligands, Greener Lewis Acids, Asymmetric Catalysis, Heterogenising the Homogenous catalysts, Phase transfer catalysis: Hazard Reduction, C–C Bond Formation, Oxidation Using Hydrogen Peroxide, Bio-catalysis and photo-catalysis with examples.

UNIT III: ORGANIC SOLVENTS: ENVIRONMENTALLY BENIGN SOLUTIONS

Organic solvents and volatile organic compounds, solvent free systems, supercritical fluids: Super critical carbondioxide, super critical water and water as a reaction solvent: water-based coatings, Ionic liquids as catalyst and solvent

UNIT IV: EMERGING GREENER TECHNOLOGIES AND ALTERNATIVE ENERGY SOURCES

Biomass as renewable resource, Energy: Fossil Fuels, Energy from Biomass, Solar Power, Other Forms of Renewable Energy, Fuel Cells, Chemicals from Renewable feedstocks: Chemicals from Renewable Feedstocks: Chemicals from Fatty Acids, Polymers from Renewable Resources, Some Other Chemicals from Natural Resources, Alternative Economies: The Syngas Economy, The Biorefinery, Design for energy efficiency: Photochemical Reactions: Advantages of and Challenges Faced by Photochemical Processes, Examples of Photochemical Reactions, Chemistry Using Microwaves: Microwave Heating, Microwave-assisted Reactions, Sonochemistry: Sonochemistry and Green Chemistry, Electrochemical Synthesis: Examples of Electrochemical Synthesis. Industrial applications of alternative environmentally benign catalytic systems for carrying out the important reactions such as selective oxidation, reduction and C-C bond formations (specific reactions).

UNIT V: GREEN PROCESSES FOR GREEN NANOSCIENCE

Introduction and traditional methods in the nanomaterials synthesis, Translating green chemistry principles for practicing Green Nanoscience. Green Synthesis of Nanophase Inorganic Materials and Metal Oxide Nanoparticles: Hydrothermal Synthesis, Reflux Synthesis, Microwave-Assisted Synthesis, Other methods for Green synthesis of metal and metal oxide nanoparticles, Green chemistry applications of Inorganic nanomaterials

Textbooks:

- 1. M. Lancaster, Green Chemistry an introductory text, Royal Society of Chemistry, 2002.
- 2. Paul T. Anastas and John C. Warner, Green Chemistry Theory and Practice, 4th Edition, Oxford University Press, USA

References:

- 1. Green Chemistry for Environmental Sustainability, First Edition, Sanjay K. Sharma and AckmezMudhoo, CRC Press, 2010.
- 2. Edited by AlvisePerosa and Maurizio Selva , Hand Book of Green chemistry Volume 8:Green Nanoscience, wiley-VCH, 2013.

HONOURS

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech CSE (AI& ML) LTPC

3 1 0 4

(20A3H01) VIRTUAL REALITY AND AUGMENTED REALITY

Pre-requisite Fundamentals of Computer Graphics

Course Objectives:

The course is designed to

- Teach about human interaction with computers
- Demonstrate Virtual reality
- Introduce to the current state of VR Hardware and Software. •
- Explain how to apply VR/MR/AR for various applications •

Course Outcomes:

- After completion of the course, students will be able to
- Understand the fundamentals of VR, AR and MR
- Select appropriate software and hardware for developing VR Applications
- **Design VR Applications** •
- Create game objects using Unity

UNIT I Introduction to Virtual Reality

What is Virtual Reality, Modern VR experiences, History Repeats.

Unity: Virtually Everything for you, what is virtual reality to you, types of head-mounted displays: Desktop VR, Mobile VR, the difference between virtual reality and augmented reality, Applications vs Games, Types of VR experiences, and Technical skills that are important to VR.

UNIT II **Bird's-Eye View**

Hardware, Software, Human Physiology and Perception.

Unity: Objects and Scale: Getting started with unity, creating a simple Diorama, Measurement tools, First Person Character: Understanding the Unity characters, Unity standard assets.

UNIT III The Geometry of Virtual Worlds & Light and Optics Lecture 8 Hrs Geometric Models, Changing Position and Orientation, Axis-Angle Representations of Rotation, Viewing Transformations, Chaining the Transformations

Light and Optics: Basic behavior of light, lenses, Optical Aberrations, Human Eye, Cameras, and Displays

The Physiology of Human Vision **UNIT IV**

From the Cornea to Photoreceptors, From Photoreceptors to the Visual Cortex, Eye Movements, Implications for VR

UNIT V Motion in Real and Virtual Worlds

The Vestibular System, Physics in the Virtual World.

Audio: The Physics of Sound, the Physiology of Human Hearing, Auditory Perception

Textbooks:

1. Virtual Reality, Steven M. LaValle, Cambridge University Press, 2016

2. Unity Virtual reality Projects, Jonathan Linowes, PACKT Publishing.

Reference Books:

- 1. Gerard Jounghyun Kim, "Designing Virtual Systems: The Structured Approach", 2005.
- 2. Doug A Bowman, Ernest Kuijff, Joseph J LaViola, Jr and Ivan Poupyrev, "3D User Interfaces, Theory and Practice", Addison Wesley, USA, 2005.
- 3. Oliver Bimber and Ramesh Raskar, "Spatial Augmented Reality: Merging Real and Virtual Worlds", 2005.

Lecture 8 Hrs

Lecture 10 Hrs

Lecture 9 Hrs

Lecture 8 Hrs

4. Burdea, Grigore C and Philippe Coiffet, "Virtual Reality Technology", Wiley Interscience, India, 2003.

- 1. Coursera: Virtual Reality Specialization
- 2. NPTEL course: Prof. Steven LaValle, Virtual Reality, IIT Madras

Lecture 8Hrs

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech CSE (AI& ML) LTPC 3 1 0 4

(20A33H01) SOFTWARE PROJECT MANAGEMENT USING AGILE

Pre-requisite Software Engineering Fundamentals

Course Objectives:

- Teach how to manage a Project
- Discuss Agile method of handling projects •

Course Outcomes:

After completion of the course, students will be able to

- Apply Agile methodology for software development
- Critically analyze quality of software •
- Estimate the software cost •

UNIT I Introduction, The Agile Business Case Lecture 8Hrs History, Background, and the Manifesto, Traditional Lifecycle, Agile Lifecycle, Scaling for Enterprise Agile, Four Agile Methodologies

The Agile Business Case: The Business Case, Business Value Models, Project Balance Sheet, Building the Business Case by Levels

UNIT II Quality in the Agile Space Lecture 9Hrs Quality Values and Principles, Thought Leaders and Agile Quality, Sampling for Quality Validation, Agile in the Waterfall: First Principles and Requisite Conditions, The Black Box, Interfaces, and Connectivity, Governing

UNIT III Scope and Requirements

Lecture 9Hrs Developing the Scope and Requirements: Agile Scope, Envisioning, Requirements, Planning at a Distance

Planning and Scheduling: Planning in the Enterprise Context, Scheduling, Other Plans in the Enterprise Agile Project

UNIT IV Estimating Cost and Schedule Lecture 8Hrs The Nature of Estimates, Drivers on Cost and Schedule, Building Estimates Teams Are Everything: The Social Unit, Principle and Values Guide Teams, Teams Are Building Blocks, Some Teams Work; Others Do Not, Matrix Management in the Agile Space

Governance, Managing Value UNIT V

Governance Is Built on Quality Principles, Governance Verifies Compliance

Managing Value: Defining and Accounting for Value, Burn-down Charts and Value Scorecards **Textbooks:**

1. John C. Goodpasture, PMP, "Project Management the Agile Way", Second Edition, J. Ross Publishing 2016.

Reference Books:

1. Kalpesh Ashar, Agile Essentials you always wanted to know, Vibrant publishers, 2020 2. Jutta Eckstein, Agile Software development in the large: Diving into the Deep, Jutta Eckstein Publisher, 2022

Online Learning Resources:

1. Coursera: Agile Project Management offered by Google

2. Coursera: Alex Cowan, Agile Development Specialization

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.TechCSE(AI &ML) L T P C

3 1 0 4

(20A30H03) ETHICS AND PRIVACY IN AI

Course Objectives:

The course is designed to

- To understand the need for ensuring ethics in AI
- To understand ethical issues with the development of AI agents
- To apply the ethical considerations in different AI applications
- To evaluate the relation of ethics with nature
- To overcome the risk for Human rights and other fundamental values **Course Outcomes:**

After completion of the course, students will be able to

- Understand the ethical issues in the development of AI agents
- Learn the ethical considerations of AI with perspectives on ethical values
- Apply the ethical policies in AI based applications and Robot development
- To implement the AI concepts to societal problems by adapting the legal concepts by securing fundamental rights.
- This study will help to overcome the evil genesis in the concepts of AI.
- UNIT I Introduction, What Do We Need to Understand About Lecture 8 Hrs Ethics?

Introduction: Artificial Intelligence and Ethics, Why Ethics in AI? Why Now?, Current Initiatives in AI and Ethics, Codes of Ethics in Context: Other Approaches to Ethical Questions in AI

What Do We Need to Understand About Ethics?: A Preliminary Plea: Ethics Is Not About 'Banning' Things, Normative Ethical Theories, Ethics and Empirical Evidence, So Why Do We Even Need Ethics?, So, With What Sort of Issues Is Ethics Concerned?, Who (orWhat) Is The Proper Object of Moral Concerns, and How Widely Should Our Concerns Extend?, Four Domains of Ethics: Self, Friend, Stranger, World, What Counts as Adequate Justification and Argumentin Ethics?, Moral Relativism, Moral Justification and AI, A Distributed Morality?, Moral Agents, Moral Motivation, AI, Codes of Ethics and the Law

UNIT IIDoes AlRaise Any Distinctive Ethical Questions? Codes of
Professional EthicsLecture10Hrs

Does AIRaise Any Distinctive Ethical Questions? Methodology: Focusing in on Ethical Questions, Many Ethical Issues in AI Are Shared with Other Rapidly Developing Technology, Ethical Questions Arise from AI's Typical Use to Enhance, Supplement, or Replace the Work of Humans, We Also Need to Consider the Methods of Production of AI, Hype in AI and Implications for Methodology in Ethics

Codes of Professional Ethics: Introduction: The Varieties of Ethical Codes, Professional Codes of Ethics Tendto Have Certain Commonalities, Codes of Ethics and Institutional Backing, The Context of Codes of Ethics, Can Codes of Ethics Make the Situation Worse? Yes

UNIT III How AI Challenges Professional Ethics, Developing Codes Lecture 8 Hrs of Ethics Amidst Fast Technological Change

How AI Challenges Professional Ethics: AI Professional Organizations and Companies, and the Nature of Its Development and Production, Gradients of Professional Power and Vulnerability in AI, A Third Layer of Complexity in Codes of Professional Ethics for AI: The Behaviour of Machines, The Authority of Any Resulting Codes.

Developing Codes of Ethics Amidst Fast Technological Change: Social, Cultural and Technological Change and

Ethics, Social, Cultural, Economic and Technological Change: The Example of Aland Employment,

Regulating for Whom? The Global Reach of AI, Universalism, and Relativism, Diversity in Participation as Part of the Solution.

AI, and What to Do About Them, Some Suggestions for How to Proceed

Some Characteristic Pitfalls in Considering the Ethics of AI, and

What to Do About Them: The Idealisation of Human and of Machine Agency, Building Ethics into AI and the Idealisation of Moral Agency, Replacing and Enhancing Human Agency, Boundaries and AI, Addressing the Increased Gradient of Vulnerability, Common Language, Miscommunication and the Search for Clarity.

Some Suggestions for How to Proceed: Organisations and Codes, Procedures for Drawing Up and Implementing Codes, The Content of Codes, Thinking About Ethical Issues in Developing and Implementing Codes of Ethics, Asilomar AI Principles

UNIT V An Introduction to Privacy Aspects of Information and Lecture 8 Hrs Communication Technologies,

Data Mining in Large Databases

Introduction, Privacy and the Internet, Privacy in Databases, Privacy in Ubiquitous Computing.

Data Mining in Large Databases— Strategies for Managing the Trade-Off Between Societal Benefit and Individual Privacy: Introduction, Examples of data-collecting institutions and data users, Strategies for controlling privacy, Measures of the utility of published data sets and outputs.

Textbooks:

- 1. Paula Boddington," Towards a Code of Ethics for Artificial Intelligence", Springer.
- 2. AgustiSolanas& Antoni Martínez-Ballesté "Advances in Artificial Intelligence for Privacy Protection and Security" World Scientific

Reference Books:

1. "Oxford Handbook of Ethics of AI", MarkusD.Dubber frank pasquales unitDas, oxford university press.

- 1. Coursera: Ethics of Artificial Intelligence
- 2. Coursera: Artificial Intelligence Privacy and Convenience

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech CSE (AI &ML) L T P C

3 1 0 4

(20A30H04) MEDICAL IMAGE DATA PROCESSING

Pre-requisite Computer Graphics Fundamentals

Course Objectives:

- Understand the significance of image process in medical industry
- Teach the process of extracting correct information in medical images

Course Outcomes:

The course is designed to

• Analyze medical images

• Apply image processing techniques to medical images

UNIT I Basics of Medical Image Sources Lecture 8 Hrs Radiology, The Electromagnetic Spectrum, Basic X-Ray Physics, Attenuation and Imaging, Computed Tomography, Magnetic Resonance Tomography, Ultrasound, Nuclear Medicine and

Molecular Imaging, Other Imaging Techniques, Radiation Protection and Dosimetry Image Processing in Clinical Practice: Application Examples, Image Databases, Intensity

Operations, Filter Operations, Segmentation, Spatial Transforms, Rendering and Surface Models, Registration, CT Reconstruction

UNIT II Image Representation

Lecture 10 Hrs

Pixels and Voxels, Gray Scale and Color Representation, Image File Formats, Dicom, Other Formats – Analyze 7.5, NIFTI And Interfile, Image Quality and The Signal-To-Noise Ratio, Practical Lessons

Operations in Intensity Space: The Intensity Transform Function and The

Dynamic Range, Windowing, Histograms and Histogram Operations, Dithering and Depth, Practical Lessons

UNIT IIIFiltering and Transformations, SegmentationLecture 8 HrsThe Filtering Operation, The Fourier Transform, Other Transforms, Practical Lessons

Segmentation: The Segmentation Problem, ROI Definition and Centroids, Thresholding, Region Growing, More Sophisticated Segmentation Methods, Morphological Operations, Evaluation of Segmentation Results

UNIT IV Spatial Transforms Lecture 9 Hrs Discretization – Resolution and Artifacts, Interpolation and Volume Regularization, Translation and Rotation, Reformatting, Tracking and Image-Guided Therapy

Rendering and Surface Models: Visualization, Orthogonal and Perspective Projection, and The Viewpoint, Raycasting, Surface–Based Rendering

UNIT VRegistration, CT ReconstructionLecture 8 HrsFusing Information, Registration Paradigms, Merit Functions, Optimization Strategies, Some
General Comments, Camera Calibration, Registration to Physical Space, Evaluation of
Registration Results

CT Reconstruction: Introduction, Radon Transform, Algebraic Reconstruction, Some Remarks on Fourier Transform and Filtering, Filtered Back projection

Textbooks:

1. Wolfgang Birkfellner, "Applied Medical Image Processing", Second Edition, CRC Press.

Reference Books:

1. Sinha G.R., Medical Image Processing Concepts and Application, PHI, 2014

2. Geoff Dougherty, Digital Image Processing for Medical Applications, Cambridge university press, 2010

Online Learning Resources:

1. Coursera: Pranav Rajpurkar, AI for Medical Diagnosis